scholarly journals Solubilization, Hansen Solubility Parameters, Solution Thermodynamics and Solvation Behavior of Flufenamic Acid in (Carbitol + Water) Mixtures

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1204 ◽  
Author(s):  
Faiyaz Shakeel ◽  
Sultan Alshehri

The solubilization, solution thermodynamics, solvation behavior and Hansen solubility parameters (HSPs) of an anti-inflammatory medicine flufenamic acid (FFA) in various Carbitol + water mixtures were evaluated in this study. The experimental solubility of FFA in mole fraction (xe) was measured at T = 298.2–318.2 K and p = 0.1 MPa using a static equilibrium method. The xe values of FFA in various Carbitol + water mixtures were correlated with van’t Hoff, Apelblat, Yalkowsky–Roseman, Jouyban–Acree and Jouyban–Acree–van’t Hoff models. All the studied models showed good correlation with mean error values of less than 2%. The xe value of FFA was found to increase significantly with the increase in temperature and Carbitol mass fraction in all Carbitol + water mixtures evaluated. The maximum and minimum xe values of FFA were recorded in pure Carbitol (2.81 × 10−1) at T = 318.2 K and pure water (5.80 × 10−7) at T = 298.2 K, respectively. Moreover, the HSP of FFA was found to be more closed with that of pure Carbitol, indicating the maximum solubility of FFA in pure Carbitol. The estimated values of activity coefficients showed higher molecular interactions in FFA–Carbitol combinations compared with FFA–water combinations. Thermodynamic studies indicated an endothermic and entropy-driven dissolution of FFA in all Carbitol + water mixtures. The solvation behavior of FFA was observed as enthalpy driven in all Carbitol + water combinations evaluated.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Faiyaz Shakeel ◽  
Md. Khalid Anwer ◽  
Nazrul Haq ◽  
Ibrahim A. Alsarra

AbstractThe solubilization, Hansen solubility parameters (HSPs) and apparent thermodynamic parameters of a novel anticancer medicine osimertinib (OMT) in binary propylene glycol (P) + water (W) cosolvent mixtures were evaluated. The mole fraction solubility (xe) of OMT in various (P + W) cosolvent mixtures including neat P and neat W was determined at T = 298.2–318.2 K and p = 0.1 MPa by applying a saturation shake flask method. HSPs of OMT, neat P, neat W and (P + W) cosolvent compositions free of OMT were also estimated. The xe values of OMT were regressed with Van’t Hoff, modified Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van’t Hoff models with an average errors of <3.0 %. The highest and lowest xe value of OMT was estimated in neat P (2.70 × 10−3 at T = 318.2 K) and neat W (1.81 × 10−5 at T = 298.2 K), respectively. Moreover, HSP of OMT was found to be closed with that of neat P. The solubility of OMT was found to be increased significantly with an increase in temperature and P mass fraction in all (P + W) cosolvent compositions including neat P and neat W. The results of activity coefficients suggested higher molecular interactions in OMT-P combination compared with OMT-W combination. The results of thermodynamic studies indicated an endothermic and entropy-driven dissolution of OMT in all (P + W) cosolvent compositions including neat P and neat W.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2124 ◽  
Author(s):  
Saad M. Alshahrani ◽  
Faiyaz Shakeel

The solubility and thermodynamic analysis of baricitinib (BNB) in various dimethyl sulfoxide (DMSO) + water mixtures were performed. The “mole fraction solubilities (xe)” of BNB in DMSO and water mixtures were determined at “T = 298.2–323.2 K” and “p = 0.1 MPa” using an isothermal saturation technique. “Hansen solubility parameters (HSPs)” of BNB, pure DMSO, pure water and “DMSO + water” mixtures free of BNB were also estimated. The xe data of BNB was regressed well by five different thermodynamics-based co-solvency models, which included “Apelblat, Van’t Hoff, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van’t Hoff models” with overall deviations of <5.0%. The highest and lowest xe value of BNB was computed in pure DMSO (1.69 × 10−1 at T = 323.2 K) and pure water (2.23 × 10−5 at T = 298.2 K), respectively. The HSP of BNB was found to be closer to that of pure DMSO. Based on activity coefficient data, maximum solute–solvent molecular interactions were observed in BNB-DMSO compared to BNB-water. The results of “apparent thermodynamic analysis” indicated endothermic and entropy-drive dissolution of BNB in all “DMSO + water” combinations including mono-solvents (water and DMSO). “Enthalpy-entropy compensation analysis” showed enthalpy-driven to be the main mechanism of solvation of BNB.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7052
Author(s):  
Faiyaz Shakeel ◽  
Mohsin Kazi ◽  
Fars K. Alanazi ◽  
Prawez Alam

Between 293.2 and 313.2 K and at 0.1 MPa, the solubility of the weak base, cinnarizine (CNZ) (3), in various {Transcutol-P (TP) (1) + water (2)} combinations is reported. The Hansen solubility parameters (HSP) of CNZ and various {(TP) (1) + water (2)} mixtures free of CNZ were also predicted using HSPiP software. Five distinct cosolvency-based mathematical models were used to link the experimentally determined solubility data of CNZ. The solubility of CNZ in mole fraction was increased with elevated temperature and TP mass fraction in {(TP) (1) + water (2)} combinations. The maximum solubility of CNZ in mole fraction was achieved in neat TP (5.83 × 10−2 at 313.2 K) followed by the minimum in neat water (3.91 × 10−8 at 293.2 K). The values of mean percent deviation (MPD) were estimated as 2.27%, 5.15%, 27.76%, 1.24% and 1.52% for the “Apelblat, van’t Hoff, Yalkowsky–Roseman, Jouyban–Acree, and Jouyban–Acree–van’t Hoff models”, respectively, indicating good correlations. The HSP value of CNZ was closed with that of neat TP, suggesting the maximum solubilization of CNZ in TP compared with neat water and other aqueous mixtures of TP and water. The outcomes of the apparent thermodynamic analysis revealed that CNZ dissolution was endothermic and entropy-driven in all of the {(TP) (1) + water (2)} systems investigated. For {(TP) (1) + water (2)} mixtures, the enthalpy-driven mechanism was determined to be the driven mechanism for CNZ solvation. TP has great potential for solubilizing the weak base, CNZ, in water, as demonstrated by these results.


2019 ◽  
Vol 45 (8) ◽  
pp. 1258-1264 ◽  
Author(s):  
Mohd Abul Kalam ◽  
Sultan Alshehri ◽  
Aws Alshamsan ◽  
Musaed Alkholief ◽  
Raisuddin Ali ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2743 ◽  
Author(s):  
Faiyaz Shakeel ◽  
Nazrul Haq ◽  
Sultan Alshehri

The solubility values and thermodynamic parameters of a natural phytomedicine/nutrient piperine (PPN) in Transcutol-HP (THP) + water combinations were determined. The mole fraction solubilities (xe) of PPN in THP + water combinations were recorded at T = 298.2–318.2 K and p = 0.1 MPa by the shake flask method. Hansen solubility parameters (HSPs) of PPN, pure THP, pure water and THP + water mixtures free of PPN were also computed. The xe values of PPN were correlated well with “Apelblat, Van’t Hoff, Yalkowsky–Roseman, Jouyban–Acree and Jouyban–Acree–Van’t Hoff” models with root mean square deviations of < 2.0%. The maximum and minimum xe value of PPN was found in pure THP (9.10 × 10−2 at T = 318.2 K) and pure water (1.03 × 10−5 at T = 298.2 K), respectively. In addition, HSP of PPN was observed more closed with that of pure THP. The thermodynamic parameters of PPN were obtained using the activity coefficient model. The results showed an endothermic dissolution of PPN at m = 0.6–1.0 in comparison to other THP + water combinations studied. In addition, PPN dissolution was recorded as entropy-driven at m = 0.8–1.0 compared with other THP + water mixtures evaluated.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Saad M. Alshahrani ◽  
Munerah M. Alfadhel ◽  
Khalil Y.R. Abujheisha ◽  
Bjad K. Almutairy ◽  
Ahmed S. Alalaiwe ◽  
...  

AbstractThe solubility and various thermodynamic parameters of an antitumor drug brigatinib (BRN) in various ethanol (EtOH) + water (H2O) mixtures were determined in this study. The mole fraction solubility (xe) of BRN in various (EtOH + H2O) mixtures including pure EtOH and pure H2O was obtained at T = 298.2–323.2 K and p = 0.1 MPa by adopting a saturation shake flask method. Hansen solubility parameters (HSPs) of BRN, pure EtOH, pure H2O and (EtOH + H2O) mixtures free of BRN were also computed. The xe values of BRN were correlated using Van’t Hoff, Apelblat, Yalkowsky–Roseman, Jouyban–Acree and Jouyban–Acree–Van’t Hoff models with mean errors of <2.0%. The maximum and minimum xe value of BRN was obtained in pure EtOH (1.43 × 10−2 at T = 323.2 K) and pure H2O (3.08 × 10−6 at T = 298.2 K), respectively. The HSP of BRN was also found more closed with that of pure EtOH. The xe value of BRN was obtained as increasing significantly with the rise in temperature and increase in EtOH mass fraction in all (EtOH + H2O) mixtures including pure EtOH and pure H2O. The data of apparent thermodynamic analysis showed an endothermic and entropy-driven dissolution of BRN in all (EtOH + H2O) mixtures including pure EtOH and pure H2O.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3195
Author(s):  
Mohammed Ghazwani ◽  
M. Yasmin Begum ◽  
Prawez Alam ◽  
Mohammed H. Alqarni ◽  
Hasan S. Yusufoglu ◽  
...  

This article studies the solubility, Hansen solubility parameters (HSPs), and thermodynamic behavior of a naturally-derived bioactive thymoquinone (TQ) in different binary combinations of isopropanol (IPA) and water (H2O). The mole fraction solubilities (x3) of TQ in various (IPA + H2O) compositions are measured at 298.2–318.2 K and 0.1 MPa. The HSPs of TQ, neat IPA, neat H2O, and binary (IPA + H2O) compositions free of TQ are also determined. The x3 data of TQ are regressed by van’t Hoff, Apelblat, Yalkowsky–Roseman, Buchowski–Ksiazczak λh, Jouyban–Acree, and Jouyban–Acree–van’t Hoff models. The maximum and minimum x3 values of TQ are recorded in neat IPA (7.63 × 10−2 at 318.2 K) and neat H2O (8.25 × 10−5 at 298.2 K), respectively. The solubility of TQ is recorded as increasing with the rise in temperature and IPA mass fraction in all (IPA + H2O) mixtures, including pure IPA and pure H2O. The HSP of TQ is similar to that of pure IPA, suggesting the great potential of IPA in TQ solubilization. The maximum molecular solute-solvent interactions are found in TQ-IPA compared to TQ-H2O. A thermodynamic study indicates an endothermic and entropy-driven dissolution of TQ in all (IPA + H2O) mixtures, including pure IPA and pure H2O.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 746
Author(s):  
Faiyaz Shakeel ◽  
Nazrul Haq ◽  
Ibrahim Alsarra ◽  
Sultan Alshehri

The solubility values, various Hansen solubility parameters (HSPs) and thermodynamic behavior of emtricitabine (ECT) in twelve different pure solvents (PS) were estimated using various experimental as well as computational methods. Experimental solubility values (xe) of ECT in twelve different PS were obtained at T = 298.2 K to 318.2 K and p = 0.1 MPa. The xe values of ECT were correlated by “van’t Hoff, Apelblat and Buchowski-Ksiazaczak λh models”. Various HSPs for ECT and twelve different PS were also calculated using “HSPiP software”. The xe values of ECT were estimated maximum in polyethylene glycol-400 (PEG-400; 1.41 × 10−1), followed by ethylene glycol, Transcutol-HP, propylene glycol, methanol, water, isopropanol, ethanol, 1-butanol, dimethyl sulfoxide, 2-butanol and EA (1.28 × 10−3) at T = 318.2 K. “Apparent thermodynamic analysis” showed an “endothermic and entropy-driven dissolution” of ECT. Overall, PEG-400 was found as the best/ideal solvent for solubility/miscibility of ECT compared to other solvents studied.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1559 ◽  
Author(s):  
Faiyaz Shakeel ◽  
Nazrul Haq ◽  
Ibrahim A. Alsarra ◽  
Sultan Alshehri

This study was aimed to find out the solubility, thermodynamic behavior, Hansen solubility parameters and molecular interactions of an antiviral drug emtricitabine (ECT) in various “[polyethylene glycol-400 (PEG-400) + water]” mixtures. The solubility of ECT in mole fraction was determined at “T = 298.2 to 318.2 K” and “p = 0.1 MPa” using an isothermal method. The experimental solubilities of ECT in mole fraction were validated and correlated using various computational models which includes “Van’t Hoff, Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van’t Hoff models”. All the models performed well in terms of model correlation. The solubility of ECT was increased with the raise in temperature in all “PEG-400 + water” mixtures studied. The highest and lowest solubility values of ECT were found in pure PEG-400 (1.45 × 10−1) at “T = 318.2 K” and pure water (7.95 × 10−3) at “T = 298.2 K”, respectively. The quantitative values of activity coefficients indicated higher interactions at molecular level in ECT and PEG-400 combination compared with ECT and water combination. “Apparent thermodynamic analysis” showed an “endothermic and entropy-driven dissolution” of ECT in all “PEG-400 + water” combinations studied. The solvation nature of ECT was found an “enthalpy-driven” in each “PEG-400 + water” mixture studied.


Sign in / Sign up

Export Citation Format

Share Document