Chaotic Search Based Equilibrium Optimizer for Dealing with Nonlinear Programming and Petrochemical Application
In this article, chaotic search based constrained equilibrium optimizer algorithm (CS-CEOA) is suggested by integrating a novel heuristic approach called equilibrium optimizer with a chaos theory-based local search algorithm for solving general non-linear programming. CS-CEOA is consists of two phases, the first one (phase I) aims to detect an approximate solution, avoiding being stuck in local minima. In phase II, the chaos-based search algorithm improves local search performance to obtain the best optimal solution. For every infeasible solution, repair function is implemented in a way such that, a new feasible solution is created on the line segment defined by a feasible reference point and the infeasible solution itself. Due to the fast globally converging of evolutionary algorithms and the chaotic search’s exhaustive search, CS-CEOA could locate the true optimal solution by applying an exhaustive local search for a limited area defined from Phase I. The efficiency of CS-CEOA is studied over multi-suites of benchmark problems including constrained, unconstrained, CEC’05 problems, and an application of blending four ingredients, three feed streams, one tank, and two products to create some certain products with specific chemical properties, also to satisfy the target costs. The results were compared with the standard evolutionary algorithms as PSO and GA, and many hybrid algorithms in the same simulation environment to approve its superiority of detecting the optimal solution over selected counterparts.