scholarly journals Enhancement of Thermophilic Biogas Production from Palm Oil Mill Effluent by pH Adjustment and Effluent Recycling

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 878
Author(s):  
Apinya Singkhala ◽  
Chonticha Mamimin ◽  
Alissara Reungsang ◽  
Sompong O-Thong

A sudden pH drops always inhibits the anaerobic digestion (AD) reactor for biogas production from palm oil mill effluent (POME). The pH adjustment of POME by oil palm ash addition and the biogas effluent recycling effect on the preventing of pH drop and change of the archaea community was investigated. The pH adjustment of POME to 7.5 increased the methane yield two times more than raw POME (pH 4.3). The optimal dose for pH adjustment by oil palm ash addition was 5% w/v with a methane yield of 440 mL-CH4/gVS. The optimal dose for pH adjustment by biogas effluent recycling was 20% v/v with a methane yield of 351 mL-CH4/gVS. Methane production from POME in a continuous reactor with pH adjustment by 5% w/v oil palm ash and 20% v/v biogas effluent recycling was 19.1 ± 0.25 and 13.8 ± 0.3 m3 CH4/m3-POME, respectively. The pH adjustment by oil palm ash enhanced methane production for the long-term operation with the stability of pH, alkalinity, and archaea community. Oil palm ash increased the number of Methanosarcina mazei and Methanothermobacter defluvii. Oil palm ash is a cost-effective alkali material as a source of buffer and trace metals for preventing the pH drop and the increased methanogen population in the AD process.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10592
Author(s):  
Nantharat Wongfaed ◽  
Prawit Kongjan ◽  
Wantanasak Suksong ◽  
Poonsuk Prasertsan ◽  
Sompong O-Thong

Background Full-scale biogas production from palm oil mill effluent (POME) was inhibited by low pH and highly volatile fatty acid (VFA) accumulation. Three strategies were investigated for recovering the anaerobic digestion (AD) imbalance on biogas production, namely the dilution method (tap water vs. biogas effluent), pH adjustment method (NaOH, NaHCO3, Ca(OH)2, oil palm ash), and bioaugmentation (active methane-producing sludge) method. The highly economical and feasible method was selected and validated in a full-scale application. Results The inhibited sludge from a full-scale biogas reactor could be recovered within 30–36 days by employing various strategies. Dilution of the inhibited sludge with biogas effluent at a ratio of 8:2, pH adjustment with 0.14% w/v NaOH, and 8.0% w/v oil palm ash were considered to be more economically feasible than other strategies tested (dilution with tap water, or pH adjustment with 0.50% w/v Ca(OH)2, or 1.25% NaHCO3 and bioaugmentation) with a recovery time of 30–36 days. The recovered biogas reactor exhibited a 35–83% higher methane yield than self-recovery, with a significantly increased hydrolysis constant (kH) and specific methanogenic activity (SMA). The population of Clostridium sp., Bacillus sp., and Methanosarcina sp. increased in the recovered sludge. The imbalanced full-scale hybrid cover lagoon reactor was recovered within 15 days by dilution with biogas effluent at a ratio of 8:2 and a better result than the lab-scale test (36 days). Conclusion Dilution of the inhibited sludge with biogas effluent could recover the imbalance of the full-scale POME-biogas reactor with economically feasible and high biogas production performance.


2012 ◽  
Vol 13 (3) ◽  
pp. 37-41 ◽  
Author(s):  
Ahmad Amiruddin Mohd ALI ◽  
Mohd Huzairi Mohd ZAINUDIN ◽  
Azni IDRIS ◽  
Azhari Samsu BAHARUDDIN ◽  
Alawi SULAIMAN ◽  
...  

2014 ◽  
Vol 625 ◽  
pp. 818-821 ◽  
Author(s):  
Ashfaq Ahmad ◽  
Syed Muhammad Usman Shah ◽  
Mohd Fariduddin Othman ◽  
Mohd Azmuddin Abdullah

Co-cultivation ofNannochloropsisoculatawith Oil Palm Empty Fruit Bunches (OPEFB) was explored for biomethane production and POME treatment. The experimental results were analyzed and modeled using a multilevel factorial design (MFD) of response surface methodology (RSM). Maximum specific biogas production rate (0.126 m3kg-1COD day-1) and biomethane production (4813.0 mL CH4L-1POME day-1) were achieved with 2 mL mL-1POME of microalgae and OPEFB 0.12 g mL-1POME. POME treatment after 3 and 7 days with microalgae achieved higher removal efficiency (56-98%) of COD, BOD and TOC, than without microalgae.


2019 ◽  
Vol 58 (1) ◽  
pp. 195-200 ◽  
Author(s):  
Nurdin Bukit ◽  
Eva M. Ginting ◽  
Eveb A. Hutagalung ◽  
Elfariska Sidebang ◽  
Erna Frida ◽  
...  

Abstract This study aims to determine the characteristics of oil palm boiler ash (OPBA) after processing with ball mill and coprecipitation methods. The method used is OPBA from a palm oil mill, processed using a ball mill for 1 hour at a speed of 250 rpm. Then prepared with the coprecipitation method by dissolving it in 2M HCl solution and NaOH solution with variations (2; 2.5; 3) M. Particles were characterized by XRD, SEM, XRF, and FTIR. XRD characterization shows the size of each crystal (83,79; 72,30 and 56,31) nm, with trigonal crystal structure with the SiO2 phase. SEM shows a homogeneous mixture. EDX shows the biggest elements are Si, O and C content. XRF shows the amount of silica is 31.45%. FTIR shows absorption peaks which are the characters of molecular vibrations of the sample.


2020 ◽  
Vol 706 ◽  
pp. 136095 ◽  
Author(s):  
B.K. Zaied ◽  
Mohd Nasrullah ◽  
Md. Nurul Islam Siddique ◽  
A.W. Zularisam ◽  
Lakhveer Singh ◽  
...  

2018 ◽  
Vol 1116 ◽  
pp. 042015 ◽  
Author(s):  
Irvan ◽  
T Husaini ◽  
E Simanungkalit ◽  
R Sidabutar ◽  
B Trisakti

Sign in / Sign up

Export Citation Format

Share Document