scholarly journals A New Approach to Solar Desalination Using a Humidification–Dehumidification Process for Remote Areas

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1120
Author(s):  
Mishal Alsehli

Freshwater supply in remote areas has become a critical issue. This paper aims to introduce a new approach to a solar-powered humidification–dehumidification (HDH) desalination system. The design uses a solar collector, a thermal storage tank, and an HDH unit. The HDH works continuously by feeding water to absorb solar energy during the day and then relaying the desalination units with feed water at a top brine temperature (TBT) at night. The model predicts the amount of solar energy stored for the next day, and based on this, the amount of feed water that should be raised to the TBT is calculated. The system operation is carried out in two phases. During the day, the feed water absorbs the heat of solar energy, thereby increasing its temperature to TBT. This hot feed water is then kept in storage tanks. At night, the tank switches to discharging mode and starts feeding the HDH with the hot feed water. The system is designed so that the roles of the tank are rotated at sunset. To achieve the same TBT every day in response to changes in the available solar energy, the mass of the feed water is adjusted daily. The design is simulated using a dynamic model of the energy and mass balance resulting in an average daily production of 7.6 kg of fresh water per unit area of the solar collector. The daily average of the gain output and the recovery ratios are 0.3 and 0.09 respectively.

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2143
Author(s):  
Mishal Alsehli

The fossil fuels that power conventional desalination systems cause substantial environmental impact. Solar desalination can satisfy critical water needs with only a minimal contribution to global warming. The current work presents an attractive new design suitable for regions with limited water resources and high solar radiation rates. This work is an experimental study of a newly designed, solar-powered, multi-stage flash (MSF) desalination plant. The design could address the need to increase the limited water resources in solar energy-rich areas. The prototype consists of a solar collector, an MSF unit, and a novel dual thermal storage tank design. In this prototype, preheated brine is directly heated by circulation through the solar collector. Two tanks serve the MSF unit; one tank feeds the MSF unit while the other receives the preheated feed water. The two tanks alternate roles every 24 h. The study was conducted in Taif, Saudi Arabia, throughout the month of September 2020. The results of the experiment showed that 1.92 square meters of solar collector area is needed for an average daily production of 19.7 kg of fresh water, at a cost of approximately $0.015 per liter.


1991 ◽  
Vol 113 (3) ◽  
pp. 164-171 ◽  
Author(s):  
P. C. Eames ◽  
B. Norton

A numerical simulation model was employed to investigate the effects of ambient temperature and insolation of the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently used collector performance characterization curves were investigated and a new approach proposed. The major advantage of the new procedure over those employed previously is that different solar collector performance characteristics can now be readily normalized to a common set of environmental conditions. Thus, an equitable comparison may be made, in the context of the application conditions, of rating characteristics for disparate collectors which were obtained initially under different conditions.


2021 ◽  
Vol 19 ◽  
pp. 276-281
Author(s):  
A. Daniel Pereira de Oliveira ◽  
◽  
B. Aylton Alves ◽  
Bárbara Morais Arantes ◽  

This study sought to analyze the viability of the use of solar energy, for the operation in boiler economizers, in the replacement of the thermal energy of the exhaust gases. The experiment was divided in two steps: analysis of the boiler yield with different feed water temperatures and addition of the solar field to the initial set. For the modeling of the economizer-boiler set, the software used was Engineering Equation Solver (Software F-Chart, Wisconsin, USA). The technology chosen for the second stage was the high-pressure vacuum solar collector, installed at the inlet of the feed water heater. The thermal power of 2014W (per plate) and the solar radiation peak of 1000W / m² were standardized, taking into account the calculations for a steady state system at noon. The variable was the number of solar panels to be used at the plant. After analyzing the data, it was verified that the efficiency varied by approximately 7.4%, when the feed water temperature was increased by 20 ° C, close to 48 ° C. In order for this variation to occur, it was necessary to use 50 plates.


2018 ◽  
Vol 5 (10) ◽  
pp. 22137-22142 ◽  
Author(s):  
A.B.A Hakim ◽  
M.E. Azni ◽  
M. Mupit ◽  
N.A. Bakar

2021 ◽  
Vol 11 (15) ◽  
pp. 6862
Author(s):  
Hongzhe Wen ◽  
Xuan Luo

Perovskites have recently attracted interest in the field of solar energy due to their excellent photovoltaic properties. We herein present a new approach to the composition of lead free perovskites via mixing of halide and oxide perovskites that share the cubic ABX3 structure. Using first-principles calculations through Density Functional Theory, we systematically investigated the atomic and electronic structures of mixed perovskite compounds composed of four cubic ABX3 perovskites. Our result shows that the B and X atoms play important roles in their band structure. On the other hand, their valence bands contributed by O-2p, Rh-4p, and Ti-3p orbitals, and their electronic properties were determined by Rh-O and Ti-O bonds. With new understandings of the electronic properties of cubic halide or oxide perovskites, we lastly combined the cubic perovskites in various configurations to improve stability and tune the bandgap to values desirable for photovoltaic cell applications. Our investigations suggest that the mixed perovskite compound Cs2Sn2Cl3I3Sr2TiRhO6 produced a bandgap of 1.2 eV, which falls into the ideal range of 1.0 to 1.7 eV, indicating high photo-conversion efficiency and showing promise towards solar energy applications.


2020 ◽  
Vol 13 (8) ◽  
pp. 2414-2421 ◽  
Author(s):  
Buddha Deka Boruah ◽  
Angus Mathieson ◽  
Bo Wen ◽  
Sascha Feldmann ◽  
Wesley M. Dose ◽  
...  

This paper presents a zinc-ion battery that can be recharged directly by light without the need for a solar cell, which offers a new approach to balancing the unpredictable energy surpluses and deficits associated with solar energy.


2020 ◽  
pp. 1-12
Author(s):  
Mostafa E. El-Salamony ◽  
Mohamed A. Aziz

Generally, unmanned aerial vehicles and micro aerial vehicles depend on batteries or conventional fuel as a source of energy. These sources of energy have limited flight time, relatively high cost, and also a certain level of pollutants. Solar energy applied to aerial vehicles is an excellent alternative way to overcome other sources of energy’s disadvantage. This study aimed to design a solar-powered aerial vehicle to achieve continuous flight on Earth. The efficiency of the solar system is related to the absorbed sun rays. The concept of an anti-symmetric N-shaped morphing wing is a good idea to increase the collected solar energy during the daily sun path. But this comes with the penalty of side forces and moments due to the anti-symmetry of the wing. This paper introduces a study for two parameters that strongly affect the aerodynamics of the N-shaped morphing wing; the dihedral part angle and the dihedral part length. The impact of the dihedral angle decreases the lift coefficient and increases the drag coefficient. The impact of the morphing wing on the aircraft performance is also considered.


2018 ◽  
Vol 67 ◽  
pp. 04011
Author(s):  
Sunaryo Sunaryo ◽  
Adri Wirawan Ramadhani

Indonesia has more than 17,000 islands and has plenty of beautiful beaches and underwater spots which have great potential for maritime tourism. Tourism was ranked 3rd on Indonesia's foreign income and plays an important role for the country’s ecomony. Despite having potential advantages, the government has not yet maximized its efforts to develop the attractiveness of its maritime tourism. Beside the beautiful spots Indonesia is also blessed with all year long sun shine, which could be tapped as renewable and green energy as substitution to fossil fuel. Refer to these great advantages of natural resources the research was aimed to support the government’s program in developing its maritime tourism and to promote the use of green and renewable energy by designing a solar-powered tourism recreational boat which has 12 meters of length. The paper is focused on the design of solar energy and its electrical system, which includes conversion of solar energy to electrical energy and store it in the battery, the required electrical power is also predicted based on the appliances and equipment installed in the boat, the optimum attachment of solar panels on the boat structure is also calculated. All the methods and information we use are obtained from literature study, discussion with experts, and surveys to Jagur as solar-powered electric boat from Universitas Indonesia.


Sign in / Sign up

Export Citation Format

Share Document