scholarly journals Community Structure of Bacteria and Archaea Associated with Geotextile Filters in Anaerobic Bioreactor Landfills

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1377
Author(s):  
Cevat Yaman ◽  
Suriya Rehman ◽  
Tanveer Ahmad ◽  
Yusuf Kucukaga ◽  
Burcu Pala ◽  
...  

Landfills are an example of an environment that contains highly complex communities of microorganisms. To evaluate the microbial community structure, four stainless steel pilot-scale bioreactor landfills with single- and double-layered geotextile fabric were used. Two reactors (R-1 and R-2) contained municipal solid waste (MSW) and sewage sludge, while the other two reactors (R-3 and R-4) contained only MSW. A single layer of geotextile fabric (R2GT3 and R3GT3) was inserted in the drainage layers of the two reactors (R-2 and R-3), while a double layer of geotextile fabric (R4GT2 and R4GT1) was inserted in one of the reactors (R-4). Scanning electron microscopy demonstrated that biomass developed on the geotextile fabrics after 540 days of bioreactor operation. The metagenomics analyses of the geotextile samples by 16S rRNA gene sequencing indicated that the geotextile bacterial communities were dominated by the phyla Firmicutes, Bacteroidetes, and Thermotogeae, while Proteobacteria were detected as the rarest bacterial phylum in all the geotextile samples. Treponema, Caldicoprobacter, and Clostridium were the most dominant anaerobic and fermentative bacterial genera associated with the geotextile fabric in the bioreactors. Euryarchaeota was the predominant archaean phylum detected in all the geotextile samples. In the archaeal communities, Methanosarcina, and Vadin CA11 were identified as the predominant genera. The diversity of microorganisms in landfill bioreactors is addressed to reveal opportunities for landfill process modifications and associated operational optimization. Thus, this study provides insights into the population dynamics of microorganisms in geotextile fabrics used in bioreactor landfills.

Author(s):  
Chen Zheng-li ◽  
Peng Yu ◽  
Wu Guo-sheng ◽  
Hong Xu-Dong ◽  
Fan Hao ◽  
...  

Abstract Burns destroy the skin barrier and alter the resident bacterial community, thereby facilitating bacterial infection. To treat a wound infection, it is necessary to understand the changes in the wound bacterial community structure. However, traditional bacterial cultures allow the identification of only readily growing or purposely cultured bacterial species and lack the capacity to detect changes in the bacterial community. In this study, 16S rRNA gene sequencing was used to detect alterations in the bacterial community structure in deep partial-thickness burn wounds on the back of Sprague-Dawley rats. These results were then compared with those obtained from the bacterial culture. Bacterial samples were collected prior to wounding and 1, 7, 14, and 21 days after wounding. The 16S rRNA gene sequence analysis showed that the number of resident bacterial species decreased after the burn. Both resident bacterial richness and diversity, which were significantly reduced after the burn, recovered following wound healing. The dominant resident strains also changed, but the inhibition of bacterial community structure was in a non-volatile equilibrium state, even in the early stage after healing. Furthermore, the correlation between wound and environmental bacteria increased with the occurrence of burns. Hence, the 16S rRNA gene sequence analysis reflected the bacterial condition of the wounds better than the bacterial culture. 16S rRNA sequencing in the Sprague-Dawley rat burn model can provide more information for the prevention and treatment of burn infections in clinical settings and promote further development in this field.


Author(s):  
David L. Kirchman

Community structure refers to the taxonomic types of microbes and their relative abundance in an environment. This chapter focuses on bacteria with a few words about fungi; protists and viruses are discussed in Chapters 9 and 10. Traditional methods for identifying microbes rely on biochemical testing of phenotype observable in the laboratory. Even for cultivated microbes and larger organisms, the traditional, phenotype approach has been replaced by comparing sequences of specific genes, those for 16S rRNA (archaea and bacteria) or 18S rRNA (microbial eukaryotes). Cultivation-independent approaches based on 16S rRNA gene sequencing have revealed that natural microbial communities have a few abundant types and many rare ones. These organisms differ substantially from those that can be grown in the laboratory using cultivation-dependent approaches. The abundant types of microbes found in soils, freshwater lakes, and oceans all differ. Once thought to be confined to extreme habitats, Archaea are now known to occur everywhere, but are particularly abundant in the deep ocean, where they make up as much as 50% of the total microbial abundance. Dispersal of bacteria and other small microbes is thought to be easy, leading to the Bass Becking hypothesis that “everything is everywhere, but the environment selects.” Among several factors known to affect community structure, salinity and temperature are very important, as is pH especially in soils. In addition to bottom-up factors, both top-down factors, grazing and viral lysis, also shape community structure. According to the Kill the Winner hypothesis, viruses select for fast-growing types, allowing slower growing defensive specialists to survive. Cultivation-independent approaches indicate that fungi are more diverse than previously appreciated, but they are less diverse than bacteria, especially in aquatic habitats. The community structure of fungi is affected by many of the same factors shaping bacterial community structure, but the dispersal of fungi is more limited than that of bacteria. The chapter ends with a discussion about the relationship between community structure and biogeochemical processes. The value of community structure information varies with the process and the degree of metabolic redundancy among the community members for the process.


2008 ◽  
Vol 74 (16) ◽  
pp. 5237-5240 ◽  
Author(s):  
Colin R. Jackson ◽  
Andrew Q. Weeks

ABSTRACT Bacterial communities associated with sediment particles were examined using PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing. Particle size influenced community structure, with attached bacterial assemblages separating into 63- to 125-, 125- to 1,000-, and 1,000- to 2,000-μm fractions. Differences were particularly pronounced for the Verrucomicrobia-Planctomycetes, whose numbers were significantly reduced on coarser particles.


2013 ◽  
Vol 726-731 ◽  
pp. 209-216
Author(s):  
Huai Yuan Zhao ◽  
Bing Huang ◽  
Dong Ggou Sun ◽  
Wen Gang Zuo

A desulfuration bacterial community with high efficiency of removing SO2were obtained with inductive domestication method. The isolated cultures technique and 16S rRNA gene sequencing technique were used to investigate the bacterial community structure and dynamic change in domestication process. The results showed that 13 species were identified from 45 isolated strains from bacterial community after 7d ,14d and 21d domestication, they were the first find associated with removing SO2.The community structure varied significantly in domestication process during which some species kept stable while others were replaced by new species gradually. The results confirmedRhodococcus erythropolishad good desulfurization ability and stability , might be the key microorganism involved in removing SO2, were preliminarily confirmed dominate species. Other dominant bacteria werePseudomonas putidaandMicrobacterium oxydans.Isolated strains and their gene imformation provided a lot of microbial resources for development microbial desulphurization technology of contained SO2tail gas.


2021 ◽  
Author(s):  
Xin ZHANG ◽  
Ge-Er QING ◽  
Ju-Lin GAO ◽  
Xiao-Fang YU ◽  
Shu-Ping HU ◽  
...  

Abstract To systematically analyze the succession of functional microbiota that plays an important role during culture of microbial consortia M44 and its relationship with straw degradation characteristics, we determined the straw degradation ratio and activities of cellulose, hemicellulose, lignin enzyme, and VFA content of M44 in different culture periods. We also used 16S rRNA gene sequencing to analyze the change in microbial community structure in M44 and explore the differences in microbial composition in the original sample. The results showed that at 15 ℃ for 21 days, the straw degradation rate, endoglucanase activity, and filter paper enzyme activity of M44 generally decreased with increasing culture age, reaching their highest values at F1. The activities of xylanase, laccase, and lignin peroxidase, as well as VFA content, were the highest at F5, showing a single-peak curve change with first an increase and then decrease. At the phylum level, Proteobacteria, Bacteroidetes, and Firmicutes were dominant in the original samples and in different culture stages. At the genus level, Devosia and Bacillus were dominant in the original sample. During subculture, the dominant bacteria in the first generation (F1) were Pseudomonas, Flavobacterium, Brevundimonas, Achromobacter, Chryseobacterium, and Devosia. The dominant genera in the last generation (F11) were Trichococcus, Acinetobacter, Dyssgonomonas, and Rhizobium. In conclusion, we identified changes in microbial community structure occurring in M44 during subculture, as well as similarities and differences in microbial communities from the original sample.


Author(s):  
Alicia Rodríguez-González ◽  
Francesco Vitali ◽  
Marta Moya ◽  
Carlotta De Filippo ◽  
Maria Beatrice Passani ◽  
...  

IntroductionChronic alcohol consumption is known to cause gut dysbiosis (changes in microbiota composition and/or function, disruptive of the normal host–microbiota interactions). However, little is known about the changes that alcohol binge drinking induces in the gut microbiota. Here, we have tested the hypothesis that a protocol of alcohol binge drinking, known to induce neuroinflammation in previous studies, also promotes intestinal dysbiosis, and we explored how oleoylethanolamide (OEA, an acylethanolamide proven to counteract alcohol binge drinking-induced neuroinflammation) pretreatment modulates alcohol-induced dysbiosis.MethodsAlcohol binges were forced by gavage three times per day during 4 consecutive days; OEA pretreatment (intraperitoneal or intragastric) was administered before each alcohol gavage. Stool microbiota composition was assessed by next-generation 16S rRNA gene sequencing, prior and after the 4-day alcohol binge protocol.ResultsAlcohol binge drinking reduced the richness of the gut microbiota and changed the microbial community, reducing Lactobacillus among other genera. Pretreatment with OEA in the alcohol-administered rats decreased the richness, evenness, and Shannon indices to a greater extent with respect to alcohol alone, also changing the community structure. Microbial interactions in the association network were further decreased following OEA administration in the alcohol group, with respect to the water administration. The synergistic interaction between alcohol binge and OEA was affected by the route of administration of OEA, since oral and i.p. administrations differently changed the community structure.ConclusionResults suggest that alcohol binge drinking produces a clear dysbiosis in animals; we observed that the well-known protective actions of OEA in the context of alcohol abuse might not be related to OEA-induced changes in alcohol-induced dysbiosis. These are observational results, and thus, further research will be needed for a complete understanding of the biological significance of the observed changes.


Sign in / Sign up

Export Citation Format

Share Document