scholarly journals Effect of Tip Clearance on Helico-Axial Flow Pump Performance at Off-Design Case

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1653
Author(s):  
Nengqi Kan ◽  
Zongku Liu ◽  
Guangtai Shi ◽  
Xiaobing Liu

To reveal the effect of tip clearance on the flow behaviors and pressurization performance of a helico-axial flow pump, the standard k-ε turbulence model is employed to simulate the flow characteristics in the self-developed helico-axial flow pump. The pressure, streamlines and turbulent kinetic energy in a helico-axial flow pump are analyzed. Results show that the tip leakage flow (TLF) forms a tip-separation vortex (TSV) when it enters the tip clearance and forms a tip-leakage vortex (TLV) when it leaves the tip clearance. As the blade tip clearance increases, the TLV moves along the blade from the leading edge (LE) to trailing edge (TE). At the same time, the entrainment between the TLV and the main flow deteriorates the flow pattern in the pump and causes great hydraulic loss. In addition, the existence of tip clearance also increases the possibility of TLV cavitation and has a great effect on the pressurization performance of the helico-axial flow pump. The research results provide the theoretical basis for the structural optimization design of the helico-axial flow pump.

Author(s):  
Yaojun Li ◽  
Fujun Wang

Axial-flow pump equipped with inducer are widely used in marine propulsion systems. The interaction of inducer and impeller has significant effect on the performance of pump. In this study, a special axial-flow pump is designed and analysed by CAD-CFD approaches to study the interaction of inducer and impeller. The pump includes two main elements, an inducer with 3 blades mounted on a conical hub and a 6-blade impeller. The blade angle of impeller is adjustable to generate different relative circumferential angles between the inducer blade trailing edge and the impeller blade leading edge. The 3D pump solid model is generated by taking the data file as interface between hydraulic-design and 3D modelling. A computational fluid dynamics code is used to investigate the flow characteristics and performance of the axial-flow pump. Numerical simulation is performed by adopting 3D RANS equations with RNG k-epsilon turbulence model. An unstructured grid system and the finite-volume method are used for the solution procedure of the discretized governing equations for this problem. The rotator-stator interaction is treated with a multiple reference frame (MRF) strategy. Computations are performed in different cases: 7 different relative circumferential angles (Δθ) between the inducer blade trailing edge and the impeller blade leading edge, 3 different axial gaps (G) between the inducer and the impeller. Variation of the hydraulic loss in the rotator is obtained with the change of delta theta. The numerical results show that the pressure generated is minimum in case of (G = 3%D). This indicates that the interference between inducer and impeller is strong if the axial gap is small. The pump performances are predicted and compared to the experimental measurements. The current investigation leads to a thorough enough understanding of the flow characteristics in axial-flow pumps with complex configurations. Recommendations for future modifications and improvements to the pump design are also given.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 935 ◽  
Author(s):  
Bin Xu ◽  
Xi Shen ◽  
Desheng Zhang ◽  
Weibin Zhang

The tip gap existing between the blade tip and casing can give rise to tip leakage flow and interfere with the main flow, which causes unstable flow characteristics and intricate vortex in the passage. Investigation on the tip clearance effect is of great important due to its extensive applications in the rotating component of pumps. In this study, a scaling axial flow pump used in a south-north water diversion project with different sizes of tip clearances was employed to study the tip clearance effect on tip leakage vortex (TLV) characteristics. This analysis is based on a modified turbulence model. Validations were carried out using a high-speed photography technique. The tip clearance effect on the generation and evolution of TLV was investigated through the mean velocity, pressure, and vorticity fields. Results show that there are two kinds of TLV structures in the tip region. Accompanied by tip clearance increasing, the viscous loss in the tip area of the axial flow pump increases. Furthermore, the tip clearance effect on pressure distribution in the blade passage is discussed. Beyond that, the tip clearance effect on vortex core pressure and cavitation is studied.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4168
Author(s):  
Botao Zhang ◽  
Xiaochen Mao ◽  
Xiaoxiong Wu ◽  
Bo Liu

To explain the effect of tip leakage flow on the performance of an axial-flow transonic compressor, the compressors with different rotor tip clearances were studied numerically. The results show that as the rotor tip clearance increases, the leakage flow intensity is increased, the shock wave position is moved backward, and the interaction between the tip leakage vortex and shock wave is intensified, while that between the boundary layer and shock wave is weakened. Most of all, the stall mechanisms of the compressors with varying rotor tip clearances are different. The clearance leakage flow is the main cause of the rotating stall under large rotor tip clearance. However, the stall form for the compressor with half of the designed tip clearance is caused by the joint action of the rotor tip stall caused by the leakage flow spillage at the blade leading edge and the whole blade span stall caused by the separation of the boundary layer of the rotor and the stator passage. Within the investigated varied range, when the rotor tip clearance size is half of the design, the compressor performance is improved best, and the peak efficiency and stall margin are increased by 0.2% and 3.5%, respectively.


Author(s):  
Desheng Zhang ◽  
Weidong Shi ◽  
Suqing Wu ◽  
Dazhi Pan ◽  
Peipei Shao ◽  
...  

In this paper, the tip leakage vortex (TLV) structures in an axial flow pump were investigated by numerical and experimental methods. Based on the comparisons of different blade tip clearance size (i.e., 0.5 mm, 1mm and 1.5mm) and different flow rate conditions, TLV trajectories were obtained by Swirling Strength method, and simulated by modified SST k-ω turbulence model with refined high-quality structured grids. A high-speed photography test was carried out to capture the tip leakage vortex cavitation in an axial flow pump with transparent casing. Numerical results were compared with the experimental leakage vortex trajectories, and a good agreement is presented. The detailed trajectories show that the start point of tip leakage vortex appears near the leading edge at small flow rate, and it moves from trailing edge to about 30% chord span at rated flow rate. At the larger flow rate condition, the starting point of TLV shifts to the middle of chord, and the direction of TLV moves parallel to the blade hydrofoil. As the increasing of the tip size, the start point of TLV trajectories moves to the central of chord and the minimum pressure in vortex core is gradually reduced.


Author(s):  
Xiaochen Mao ◽  
Bo Liu ◽  
Hang Zhao

This paper presents the studies performed to better understand the effects of increased tip clearance size on the unsteady flow behaviors and overall performance under the rotor–rotor interaction environment in a counter-rotating axial flow compressor. The investigation method is based on the three-dimensional unsteady Reynolds-averaged Navier–Stokes simulations. The results show that the intensified tip leakage flow in front rotor (R1) caused by the increased tip clearance size will lead to the growth of incoming incidence angle near the tip of the rear rotor (R2). The increasing of double leakage flow range plays a significant role in the sensitivity of the efficiency to tip clearance size and its extent is enlarged gradually with the increase of tip clearance size. As the tip clearance size is increased to 1.5τ (τ represents the designed tip clearance size) from 0.5τ, the results of the fast Fourier transform for the static pressure near blade tip show that two other new fluctuating frequency components appear due to the happening of tip leakage flow self-unsteadiness in R1 and R2, respectively. Additionally, the fluctuating strength near the tip in R2 is significantly increased. However, both the overall fluctuation in R1 caused by the potential effect from downstream and the oscillation in the hub corner on the pressure side of R2 are decreased obviously. The relative inflow angle tends to increase when the incoming wakes and tip leakage flow from R1 encounter the blade leading edge of R2, which leads to the result that the trajectory of tip leakage flow is shifted more upstream.


Author(s):  
Zhaodan Fei ◽  
Hui Xu ◽  
Rui Zhang ◽  
Yuan Zheng ◽  
Tong Mu ◽  
...  

The blade angle has a great effect on hydraulic performance and internal flow field for axial-flow pumps. This research investigated the effect of the blade angle on hydraulic performance and tip leakage vortex (TLV) of a slanted axial-flow pump. The hydraulic performance and the TLV are compared with different setting angles. The dimensionless turbulence kinetic energy (TKE) is used to investigate the TLV. A novel variable fv is utilized to analyze the relation among the TLV, strain tensor and vorticity tensor. The proper orthogonal decomposition (POD) method is used to analyze TLV structure. The results show that with the increase of the blade angle, the pump head is getting larger, the flow rate of the best efficiency moves to be larger, and both the primary TLV (P-TLV) and the secondary TLV (S-TLV) are getting stronger. The P-TLV often exists in the outer edge of TKE distribution and S-TLVs often exist in the largest value area of TKE. This phenomenon is more evident with blade angle increasing. Through POD method, it shows that the first six modes contain more than 90% of TKE. The reason why the TKE value near the region of S-TLV is high is that the tip leakage flow is a kind of jet-like flow with high kinetic energy. The main structure of the P-TLV is shown in modes 4−6, resulting in a reflux zone but not with the highest TKE.


2012 ◽  
Vol 588-589 ◽  
pp. 1255-1258
Author(s):  
Zhong Li ◽  
Ning Zhang ◽  
Bo Hong ◽  
Qing Li

Based on external characteristic test, the performance of designed axial-flow model pump was determined. Combingmixture N-S equations with RNG turbulence model and full cavitation model, the cavitation flow in tip clearance of axial-flow pump at flow rate of best efficiency point is simulated. The results show that the incipient cavitation region is located in the leading edge of tip airfoil. With the decrease of cavitation number, the cavitation region at tip airfoil moves gradually from leading edge to trailing edge. The development process of cavitation can be divided into three different stages and the typical characteristics of each stage are given


Author(s):  
Chao Liu ◽  
Fan Yang ◽  
Yan Jin ◽  
Hua Yang

Three-dimensional flow-fields in a high-efficient axial flow pump system were simulated by CFD to further study the internal flow characteristics. The internal flow patterns of the pump system were obtained at large, small and optimum operating conditions. The highest efficiency of pump system measured and calculated are 82.57% and 81% respectively at blade angle 0°. For the suction passage, the axial velocity distribution uniformity reach 97.51%, and the hydraulic loss is 0.039m, the pipe efficiency calculated is 98.5% at the optimum operating conditions. The maximum velocity is 1.429 m/s in the range of operating conditions, which meet the requirement of National standard. The performances predicted were compared with measurement results. It was found that the calculated results agree well with the measured results. The overall flow pattern of the pump system is uniform and smooth, and the hydraulic loss is very small which gives the excellent hydraulic performances of pump system.


2021 ◽  
Vol 9 (10) ◽  
pp. 1045
Author(s):  
Hu Zhang ◽  
Jianbo Zang ◽  
Weidong Shi ◽  
Desheng Zhang

To understand the formation mechanism and evolution process of the perpendicular cavitation vortex (PCV) of an axial flow pump for off-design conditions, turbulent cavitating flows were numerically investigated using the rotation curvature-corrected shear stress transport (SST-CC) turbulence model and the Zwart–Gerber–Belamri cavitation model. In this work, the origin and evolution of a PCV were analyzed through a high-speed photography experiment and numerical simulation. The results showed that the PCV came from a secondary tip leakage vortex (S-TLV) and was aggregated by the action of the re-entrant jet, combined with the cavitation bubbles driven by the radial flow to form the cavitation vortex (CV). With the joint action of leakage jet lifting and TLV entrainment, the PCV was reoriented and gradually became perpendicular to the chord direction. Then, the PCV and TLV collided, mixed, and entrained, which formed a strong pressure pulsation. The PCV was gradually divided into upper and lower parts. One part was combined with the residual part of the TLV and flowed to the next blade, and the other part flowed out of the impeller area along the axial direction. At the same time, the generation, evolution, and dissipation of the PCV formed high pulsation amplitudes and frequencies in the middle and rear above the blade suction.


Author(s):  
Simin Shen ◽  
Zhongdong Qian ◽  
Bin Ji ◽  
Ramesh K Agarwal

The effects of varying tip clearance widths on tip flows dynamics and main flows characteristics for an axial-flow pump are studied employing computational fluid dynamics method. An analysis is presented for the distributions of turbulent kinetic energy, mean axial velocity, and mean vorticity magnitude at the specific flow rate of 0.7 Q BEP , focusing on flow patterns in the tip region with different tip clearance widths and associated flows. From the simulation results we find that the flow structure of tip vortex and its transportation strongly depend on the tip clearance width, especially for the extension of tip leakage vortex, appearance of induced vortex and the area of tip separation vortex. For a small clearance of 0.15 mm at 0.7 Q BEP, there is no tip separation vortex at the tip. When tip clearance width becomes larger, a tip separation vortex attaches more on the surface of blade tip as well as vortex intensity of tip flows increases. For tip clearances of 0.9 and 1.2 mm, there is a small part of induced vortex near the blade leading edge. Meanwhile, no induced vortex can be captured for tip clearances of 0.15 and 0.45 mm. The relative angle between the blade chord and tip leakage vortex trajectory reduces gradually when tip clearance width increases from 0.45 to 1.2 mm. Additionally, the radial position of tip leakage vortex core moves inwards as tip clearance width increases. Furthermore, a larger tip clearance width has greater effects on the main-stream characteristics especially near the shroud, which is due to more energy being exchanged between tip flows and main flows. At the flow rate 0.7 Q BEP, both the efficiency and head of the pump reduce with an increasing tip clearance because of greater energy loss.


Sign in / Sign up

Export Citation Format

Share Document