scholarly journals Prioritization of Challenges for the Effectuation of Sustainable Additive Manufacturing: A Case Study Approach

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2250
Author(s):  
Naif Alsaadi

Additive manufacturing (AM) is gaining significant importance, as demand for customized products is increasing nowadays. AM is one of the disruptive technologies of Industry 4.0, which can reduce waste generation, enabling sustainability. The adoption of sustainable practices in the manufacturing sector is due to the need of the current scenario to minimize harmful emissions and for human wellbeing. In this regard, AM technologies are integrated with sustainable manufacturing concepts to contribute toward sustainable AM (SAM), with various benefits from the design, manufacturing, use, and EoL perspectives. Still, many sustainability issues are associated with AM processes, namely limited speed and the uncertain performance of fabricated parts. From this viewpoint, it is essential to analyze the challenges associated with adopting SAM practices. This article presents identification and analysis of the potential challenges associated with adopting SAM practices. Fifteen SAM challenges have been identified from the literature survey and analyzed using the “Gray Technique for Order of Preference by Similarity to Ideal Solution” (G-TOPSIS) approach. The priority order of the challenges has been identified. The study identified that “training towards SAM benefits” and “limited materials recycling potential” were the significant challenges in adopting SAM practices in the manufacturing sector. The present study will help industry practitioners, decision makers, and researchers effectively analyze the challenges associated with SAM for its effective implementation. Researchers can utilize the findings of the study for establishing the guidelines for the adoption of SAM.

2021 ◽  
Vol 309 ◽  
pp. 01035
Author(s):  
Kalpana Kilaru

Materials will play an important role in any manufacturing sector. Additive manufacturing is the one of the most Emerging Manufacturing technology which is adding a sustainable dimension to Human life by using bio medical dental aligners in orthodontics. The new presentation of Sustainable manufacturing is upsetting endodontist, furthermore, it is in any event, it is applied to dental treatment of poor alignment of teeth and jaws. Exact, customized, Detachable aligners are an appropriate option in contrast to ordinary orthodontic machines, offering a more agreeable furthermore, and productive answer for patients Simultaneously, Detachable Clips are created by a thermoset’s interaction utilizing different sorts of thermoset elements. The Elastomer system modifies the Characteristics of the element, and the intra oral climate moreover changes the characteristic of an unmistakable clip, influencing execution of the element. The current audit recommends the appropriateness of Additive manufactured aligners is better than that of thermoset made aligners due to earlier expanded precision, load obstruction, and lower twisting. It is a general steadier approach to produce an aligner where sub millimetre developments can have an effect in treatment result. Direct 3D printing addresses an intricate strategy to command the density of the aligner and in this manner has superior capacity to command the power angle that are utilized to create teeth development. There is presently no other endorsed material available that can make this.


2018 ◽  
Vol 25 (8) ◽  
pp. 3162-3179 ◽  
Author(s):  
Shamraiz Ahmad ◽  
Kuan Yew Wong

Purpose The purpose of this paper is to review and analyze the recent sustainability assessment studies in the manufacturing industry from the triple-bottom-line (TBL) perspective. This paper aims to depict the status quo of practical sustainability assessment, summarize the different levels and boundaries of evaluation, and highlight the difficulties and further improvements needed to make the assessment more effective in the manufacturing industry. Design/methodology/approach Four keywords, namely, sustainability assessment, sustainable manufacturing, TBL and green production, were used to explore and find the relevant articles. First, this paper systematically reviewed the studies and analyzed the different levels and boundaries of sustainability assessment. Following this, the reviewed studies were critically discussed along with their merits and shortcomings. Findings The review showed that most of the sustainability assessment studies were conducted on product, company and process levels in the manufacturing industry. Nevertheless, there is still a need to focus more on plant and process level assessments to achieve the TBL objectives. Environmental assessment is comparatively matured in manufacturing industries. However, from the economic and social viewpoints, only cost analysis and workers’ safety, respectively, were considered in most of the studies. The economic and social indicators need to be more inclusive and should be validated and standardized for manufacturing industries. Originality/value Unlike previous sustainability assessment reviews in manufacturing industries which were mostly based on life cycle assessment, this paper has included environmental, social and economic aspects in one comprehensive review and focused on recent studies published from 2010 to 2017. This paper has explored the recent sustainability assessment trends and provided insights into the development of sustainability assessment in the manufacturing sector.


Author(s):  
Leah Cuyler ◽  
Zeyi Sun ◽  
Lin Li

Electricity demand response is considered a promising tool to balance the electricity demand and supply during peak periods. It can effectively reduce the cost of building and operating those peaking power generators that are only run a few hundred hours per year to satisfy the peak demand. The research on the electricity demand response implementation for residential and commercial building sectors has been very mature. Recently, it has also been extended to the manufacturing sector. In this paper, a simulation-based optimization method is developed to identify the optimal demand response decisions for the typical manufacturing systems with multiple machines and buffers. Different objectives, i.e. minimizing the power consumption under the constraint of system throughput, and maximize the overall earnings considering the tradeoff between power demand reduction and potential production loss, are considered. Different energy control decisions are analyzed and compared regarding the potential influence on the throughput of manufacturing system due to the different control actions adopted by throughput bottleneck machine.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Neha Choudhary ◽  
Anish Kumar ◽  
Varun Sharma ◽  
Pradeep Kumar

PurposeAdditive manufacturing (AM) is expected to significantly transform the operations in manufacturing sector. It is also proposed to have optimistic applications in the medical supply chains (SC). However, its adoption in medical sector is faced with a range of barriers. Motivated by the need to establish an AM-based medical SC in a developing economy, the present paper analyses the potential barriers that would hinder the adoption of AM in medical SC.Design/methodology/approachBased on an extensive literature review and expert discussions, 12 significant barriers have been identified, which are analysed using an integrated interpretive structural modelling–analytical network process (ISM–ANP) methodology. An interrelationship between these barriers using ISM has been analysed to determine the driving-dependence power of these barriers using MICMAC (Matrice d' Impacts Croises-Multiplication Applique' e a' Classement) analysis. The barriers are then ranked using the ANP approach.FindingsIt has been focussed that the non-availability of a variety of materials, lack of education and training to designers and workers and production technology limitation are the most critical barriers. The results suggest that the managers should give greater significance to the technological and organizational barriers.Originality/valueAn approach to overcome these barriers can help the managers and organizations to develop successful AM-based SCs. The study is the first to identify and analyse the barriers for successful adoption of AM in medical SC context.


Author(s):  
Ravinder Kumar

This is an era of information technology and Industry 4.0 in the manufacturing sector. Globalization and spread of technology have leveled the field of competition among all economies. With aforementioned development, there is a need for sustainable manufacturing practices to justify the use of natural resources all over the globe. Both developed and developing economies should adopt the sustainable practices of manufacturing. On other hand, managing challenges of sustainable manufacturing is an uphill task for manufacturing organizations for several reasons. In this chapter, the author has analyzed the challenges of sustainable manufacturing by using DEMATEL technique to differentiate them in cause and effect challenges. This differentiation can further help in effective analysis of these challenges. From practical and managerial viewpoints, this study can help the policymakers and strategy planners of manufacturing organizations in better understanding of sustainability and its aspects. Further, it can help in developing policies on sustainable manufacturing on national and international level both in developed and developing economies.


Author(s):  
Surajit Bag ◽  
Neeraj Anand ◽  
Krishan Kumar Pandey

The purpose of this chapter is to identify the dimensions of green supply chain and their impact on manufacturing practices. In this study, the authors used two extended strategies. First thorough review of literature was done considering articles from reputed journals. Second the factors identified from literature review was further refined through experts by forming a problem solving group consisting of seven experts from the manufacturing sector. These factors were used to develop the green supply chain management model using Interpretive structural modeling. Further MICMAC analysis was used to identify the driving and dependence power of the factors. The results of the analysis are very encouraging. Finally, the authors have presented the relationship management strategy for sustainable manufacturing practices.


2020 ◽  
Vol 12 (6) ◽  
pp. 2280 ◽  
Author(s):  
Mohamed Abubakr ◽  
Adel T. Abbas ◽  
Italo Tomaz ◽  
Mahmoud S. Soliman ◽  
Monis Luqman ◽  
...  

The necessity for decreasing the negative impact of the manufacturing industry has recently increased. This is getting recognized as a global challenge due to the rapid increase in life quality standards, demand, and the decrease in available resources. Thus, manufacturing, as a core of the product provision system and a fundamental pillar of civilized existence, is significantly influenced by sustainability issues. Furthermore, current manufacturing modeling and assessment criteria require intensive revisions and upgrades to keep up with these new challenges. Nearly all current manufacturing models are based on the old paradigm, which was proven to be inadequate. Therefore, manufacturing technology, along with culture and economy, are held responsible for providing new tools and opportunities for building novel resolutions towards a sustainable manufacturing concept. One of such tools is sustainability assessment measures. Revising and updating such tools is a core responsibility of the manufacturing sector to efficiently evaluate and enhance sustainable manufacturing performance. These measures should be adequate to respond to the growing sustainability concerns in pursuit of an integrated sustainability concept. The triple bottom line (TBL) that includes environment, economic, and social dimensions has usually been used to evaluate sustainability. However, there is a lack of standard sets of sustainable manufacturing performance measures. In addition to the sustainability concept, a new concept of smart manufacturing is emerging. The smart manufacturing concept takes advantage of the recent technological leap in Artificial Intelligent (AI), Cloud Computing (CC), and the Internet of Things (IoT). Although this concept offers an important step to boost the current production capabilities to meet the growing need, it is still not clear whether the two concepts of smart manufacturing and sustainability will constructively or destructively interact. Therefore, the current study aims to integrate the sustainable smart manufacturing performance by incorporating sustainable manufacturing measures and discussing current and future challenges that are faced by the manufacturing sector. In addition, the opportunities for future research incorporating sustainable smart manufacturing are also presented.


2019 ◽  
Vol 11 (16) ◽  
pp. 4294 ◽  
Author(s):  
Muhammad Imran Qureshi ◽  
Rajah A/l Rasiah ◽  
Basheer M. Al-Ghazali ◽  
Maqsood Haider ◽  
Hanifah Jambari ◽  
...  

In light of the overwhelming consumption of resources by the manufacturing sector, this paper examined three key subsystems that are critical in greening the sector. Whereas the extant literature has focused on technological development to reduce environmental damage, it has not analyzed profoundly how manufacturing processes can be greened effectively. Hence, using carefully gathered data of 299 respondents and structural equation modeling, this paper sought to investigate the mediating effect of social, environmental, and technical subsystems on the relationship between management support and sustainable manufacturing performance. The results show that management support has a positive relationship with sustainable manufacturing performance (p < 0.005), while social, environmental, and technical subsystems partially mediate this relationship. Hence, efforts must be taken to encourage management of manufacturing firms to support sustainable management performance, while at the same time supporting them to introduce innovative social, environmental, and technical practices.


Sign in / Sign up

Export Citation Format

Share Document