scholarly journals Implementation and Analysis of Tightly Coupled Global Navigation Satellite System Precise Point Positioning/Inertial Navigation System (GNSS PPP/INS) with Insufficient Satellites for Land Vehicle Navigation

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4305 ◽  
Author(s):  
Yue Liu ◽  
Fei Liu ◽  
Yang Gao ◽  
Lin Zhao

This paper implements and analyzes a tightly coupled single-frequency global navigation satellite system precise point positioning/inertial navigation system (GNSS PPP/INS) with insufficient satellites for land vehicle navigation using a low-cost GNSS receiver and a microelectromechanical system (MEMS)-based inertial measurement unit (IMU). For land vehicle navigation, it is inevitable to encounter the situation where insufficient satellites can be observed. Therefore, it is necessary to analyze the performance of tightly coupled integration in a GNSS-challenging environment. In addition, it is also of importance to investigate the least number of satellites adopted to improve the performance, compared with no satellites used. In this paper, tightly coupled integration using low-cost sensors with insufficient satellites was conducted, which provided a clear view of the improvement of the solution with insufficient satellites compared to no GNSS measurements at all. Specifically, in this paper single-frequency PPP was implemented to achieve the best performance, with one single-frequency receiver. The INS mechanization was conducted in a local-level frame (LLF). An extended Kalman filter was applied to fuse the two different types of measurements. To be more specific, in PPP processing, the atmosphere errors are corrected using a Saastamoinen model and the Center for Orbit Determination in Europe (CODE) global ionosphere map (GIM) product. The residuals of atmosphere errors are not estimated to accelerate the ambiguity convergence. For INS error mitigation, velocity constraints for land vehicle navigation are adopted to limit the quick drift of a MEMS-based IMU. Field tests with simulated partial and full GNSS outages were conducted to show the performance of tightly coupled GNSS PPP/INS with insufficient satellites: The results were classified as long-term (several minutes) and short-term (less than 1 min). The results showed that generally, with GNSS measurements applied, although the number of satellites was not enough, the solution still could be improved, especially with more than three satellites observed. With three GPS satellites used, the horizontal drift could be reduced to a few meters after several minutes. The 3D position error could be limited within 10 m in one minute when three GPS satellites were applied. In addition, a field test in an urban area where insufficient satellites were observed from time to time was also conducted to show the limited solution drift.

2019 ◽  
Vol 54 (3) ◽  
pp. 97-112
Author(s):  
Mostafa Hamed ◽  
Ashraf Abdallah ◽  
Ashraf Farah

Abstract Nowadays, Precise Point Positioning (PPP) is a very popular technique for Global Navigation Satellite System (GNSS) positioning. The advantage of PPP is its low cost as well as no distance limitation when compared with the differential technique. Single-frequency receivers have the advantage of cost effectiveness when compared with the expensive dual-frequency receivers, but the ionosphere error makes a difficulty to be completely mitigated. This research aims to assess the effect of using observations from both GPS and GLONASS constellations in comparison with GPS only for kinematic purposes using single-frequency observations. Six days of the year 2018 with single-frequency data for the Ethiopian IGS station named “ADIS” were processed epoch by epoch for 24 hours once with GPS-only observations and another with GPS/GLONASS observations. In addition to “ADIS” station, a kinematic track in the New Aswan City, Aswan, Egypt, has been observed using Leica GS15, geodetic type, dual-frequency, GPS/GLONASS GNSS receiver and single-frequency data have been processed. Net_Diff software was used for processing all the data. The results have been compared with a reference solution. Adding GLONASS satellites significantly improved the satellite number and Position Dilution Of Precision (PDOP) value and accordingly improved the accuracy of positioning. In the case of “ADIS” data, the 3D Root Mean Square Error (RMSE) ranged between 0.273 and 0.816 m for GPS only and improved to a range from 0.256 to 0.550 m for GPS/GLONASS for the 6 processed days. An average improvement ratio of 24%, 29%, 30%, and 29% in the east, north, height, and 3D position components, respectively, was achieved. For the kinematic trajectory, the 3D position RMSE improved from 0.733 m for GPS only to 0.638 m for GPS/GLONASS. The improvement ratios were 7%, 5%, 28%, and 13% in the east, north, height, and 3D position components, respectively, for the kinematic trajectory data. This opens the way to add observations from the other two constellations (Galileo and BeiDou) for more accuracy in future research.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 487 ◽  
Author(s):  
Duojie Weng ◽  
Xingli Gan ◽  
Wu Chen ◽  
Shengyue Ji ◽  
Yangwei Lu

One’s position has become an important piece of information for our everyday lives in a smart city. Currently, a position can be obtained easily using smartphones that is equipped with low-cost Global Navigation Satellite System (GNSS) chipsets with accuracy varying from 5 m to 10 m. Differential GNSS (DGNSS) is an efficient technology that removes the majority of GNSS errors with the aid of reference stations installed at known locations. The sub-meter accuracy can be achieved when applying the DGNSS technology on the advanced receivers. In 2016, Android has opened the accesses of raw GNSS measurements to developers. However, most of the mid and low-end smartphones only provide the data using the National Marine Electronics Association (NMEA) protocol. They do not provide the raw measurements, and thus do not support the DGNSS operation either. We proposed a DGNSS infrastructure that correct the standalone GNSS position of smartphones using the corrections from the reference station. In the infrastructure, the position correction is generated considering the GNSS satellite IDs that contribute to the standalone solution in smartphones, and the position obtained is equivalent to the solution of using the range-domain correction directly. To serve a large number of smartphone users, a Client/Server architecture is developed to cope with a mass of DGNSS positioning requests efficiently. The comparison of the proposed infrastructure against the ground truth, for all field tests in open areas, showed that the infrastructure achieves the horizontal positioning accuracy better than 2 m. The improvement in accuracy can reach more than 50% for the test in the afternoon. The infrastructure brings benefits to applications that require more accuracy without requiring any hardware modifications.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4896 ◽  
Author(s):  
Mohamed Elsheikh ◽  
Walid Abdelfatah ◽  
Aboelmagd Nourledin ◽  
Umar Iqbal ◽  
Michael Korenberg

The last decade has witnessed a growing demand for precise positioning in many applications including car navigation. Navigating automated land vehicles requires at least sub-meter level positioning accuracy with the lowest possible cost. The Global Navigation Satellite System (GNSS) Single-Frequency Precise Point Positioning (SF-PPP) is capable of achieving sub-meter level accuracy in benign GNSS conditions using low-cost GNSS receivers. However, SF-PPP alone cannot be employed for land vehicles due to frequent signal degradation and blockage. In this paper, real-time SF-PPP is integrated with a low-cost consumer-grade Inertial Navigation System (INS) to provide a continuous and precise navigation solution. The PPP accuracy and the applied estimation algorithm contributed to reducing the effects of INS errors. The system was evaluated through two road tests which included open-sky, suburban, momentary outages, and complete GNSS outage conditions. The results showed that the developed PPP/INS system maintained horizontal sub-meter Root Mean Square (RMS) accuracy in open-sky and suburban environments. Moreover, the PPP/INS system could provide a continuous real-time positioning solution within the lane the vehicle is moving in. This lane-level accuracy was preserved even when passing under bridges and overpasses on the road. The developed PPP/INS system is expected to benefit low-cost precise land vehicle navigation applications including level 2 of vehicle automation which comprises services such as lane departure warning and lane-keeping assistance.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2551 ◽  
Author(s):  
Qifeng Lai ◽  
Hong Yuan ◽  
Dongyan Wei ◽  
Ningbo Wang ◽  
Zishen Li ◽  
...  

Using the Global Navigation Satellite System (GNSS), it is difficult to provide continuous and reliable position service for vehicle navigation in complex urban environments, due to the natural vulnerability of the GNSS signal. With the rapid development of the sensor technology and the reduction in their costs, the positioning performance of GNSS is expected to be significantly improved by fusing multi-sensors. In order to improve the continuity and reliability of the vehicle navigation system, we proposed a multi-sensor tight fusion (MTF) method by combining the inertial navigation system (INS), odometer, and barometric altimeter with the GNSS technique. Different fusion strategies were presented in the open-sky, insufficient satellite, and satellite outage environments to check the performance improvement of the proposed method. The simulation and real-device tests demonstrate that in the open-sky context, the error of sensors can be estimated correctly. This is useful for sensor noise compensation and position accuracy improvement, when GNSS is unavailable. In the insufficient satellite context (6 min), with the help of the barometric altimeter and a clock model, the accuracy of the method can be close to that in the open-sky context. In the satellite outage context, the error divergence of the MTF is obviously slower than the traditional GNSS/INS tightly coupled integration, as seen by odometer and barometric altimeter assisting.


2004 ◽  
Vol 57 (3) ◽  
pp. 417-428 ◽  
Author(s):  
Jau-Hsiung Wang ◽  
Yang Gao

GPS-based land vehicle navigation systems are subject to signal fading in urban areas and require aid from other enabling sensors. A low-cost gyro-free inertial navigation system (INS) without accumulated attitude errors and complicated initializations could be an effective solution to the problem. This paper investigates a Constrained Navigation Algorithm (CNA) and the Artificial Neural Network (ANN) technique to compensate velocity output from a gyro-free INS. The vehicle's heading will be calibrated by a full circle test so that the magnetometer's bias and scale factor error could be removed. Experiments with a vehicle driven over level terrain have been conducted to assess the performance of the compensated gyro-free INS solutions. The effect of the architecture of Neural Network on prediction performance has also been discussed as well as the applicability of the proposed solution to land vehicle navigation with GPS outages.


Sign in / Sign up

Export Citation Format

Share Document