scholarly journals Genetic Optimization of Energy- and Failure-Aware Continuous Production Scheduling in Pasta Manufacturing

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 297 ◽  
Author(s):  
Ke Shen ◽  
Toon Pessemier ◽  
Xu Gong ◽  
Luc Martens ◽  
Wout Joseph

Energy and failure are separately managed in scheduling problems despite the commonalities between these optimization problems. In this paper, an energy- and failure-aware continuous production scheduling problem (EFACPS) at the unit process level is investigated, starting from the construction of a centralized combinatorial optimization model combining energy saving and failure reduction. Traditional deterministic scheduling methods are difficult to rapidly acquire an optimal or near-optimal schedule in the face of frequent machine failures. An improved genetic algorithm (IGA) using a customized microbial genetic evolution strategy is proposed to solve the EFACPS problem. The IGA is integrated with three features: Memory search, problem-based randomization, and result evaluation. Based on real production cases from Soubry N.V., a large pasta manufacturer in Belgium, Monte Carlo simulations (MCS) are carried out to compare the performance of IGA with a conventional genetic algorithm (CGA) and a baseline random choice algorithm (RCA). Simulation results demonstrate a good performance of IGA and the feasibility to apply it to EFACPS problems. Large-scale experiments are further conducted to validate the effectiveness of IGA.

2021 ◽  
Vol 12 (1) ◽  
pp. 407
Author(s):  
Tianshan Dong ◽  
Shenyan Chen ◽  
Hai Huang ◽  
Chao Han ◽  
Ziqi Dai ◽  
...  

Truss size and topology optimization problems have recently been solved mainly by many different metaheuristic methods, and these methods usually require a large number of structural analyses due to their mechanism of population evolution. A branched multipoint approximation technique has been introduced to decrease the number of structural analyses by establishing approximate functions instead of the structural analyses in Genetic Algorithm (GA) when GA addresses continuous size variables and discrete topology variables. For large-scale trusses with a large number of design variables, an enormous change in topology variables in the GA causes a loss of approximation accuracy and then makes optimization convergence difficult. In this paper, a technique named the label–clip–splice method is proposed to improve the above hybrid method in regard to the above problem. It reduces the current search domain of GA gradually by clipping and splicing the labeled variables from chromosomes and optimizes the mixed-variables model efficiently with an approximation technique for large-scale trusses. Structural analysis of the proposed method is extremely reduced compared with these single metaheuristic methods. Numerical examples are presented to verify the efficacy and advantages of the proposed technique.


2022 ◽  
Vol 14 (1) ◽  
pp. 491
Author(s):  
Chunxiao Zhao ◽  
Junhua Chen ◽  
Xingchen Zhang ◽  
Zanyang Cui

This paper presents a novel mathematical formulation in crew scheduling, considering real challenges most railway companies face such as roundtrip policy for crew members joining from different crew depots and stricter working time standards under a sustainable development strategy. In China, the crew scheduling is manually compiled by railway companies respectively, and the plan quality varies from person to person. An improved genetic algorithm is proposed to solve this large-scale combinatorial optimization problem. It repairs the infeasible gene fragments to optimize the search scope of the solution space and enhance the efficiency of GA. To investigate the algorithm’s efficiency, a real case study was employed. Results show that the proposed model and algorithm lead to considerable improvement compared to the original planning: (i) Compared with the classical metaheuristic algorithms (GA, PSO, TS), the improved genetic algorithm can reduce the objective value by 4.47%; and (ii) the optimized crew scheduling plan reduces three crew units and increases the average utilization of crew unit working time by 6.20% compared with the original plan.


Author(s):  
Jianfeng Xie ◽  
Qiming Yang ◽  
Shuling Dai ◽  
Wanyang Wang ◽  
Jiandong Zhang

With the continuous development of UAV technology, the trend of using UAV in the military battlefield is increasingly obvious, but the autonomous air combat capability of UAV needs to be further improved. The air combat maneuvering decision is the key link to realize the UAV autonomous air combat, and the genetic algorithm has good robustness and global searching ability which is suitable for solving large-scale optimization problems. This paper uses an improved genetic algorithm to model UAV air combat maneuvering decisions. Based on engineering application requirements, a typical simulation test scenario is established. The simulation results show that the air combat maneuvering decision model based on reinforcement genetic algorithm in this paper can obtain the correct maneuvering decision sequence and gain a position advantage in combat.


Author(s):  
Hamidreza Salmani mojaveri

One of the discussed topics in scheduling problems is Dynamic Flexible Job Shop with Parallel Machines (FDJSPM). Surveys show that this problem because of its concave and nonlinear nature usually has several local optimums. Some of the scheduling problems researchers think that genetic algorithms (GA) are appropriate approach to solve optimization problems of this kind. But researches show that one of the disadvantages of classical genetic algorithms is premature convergence and the probability of trap into the local optimum. Considering these facts, in present research, represented a developed genetic algorithm that its controlling parameters change during algorithm implementation and optimization process. This approach decreases the probability of premature convergence and trap into the local optimum. The several experiments were done show that the priority of proposed procedure of solving in field of the quality of obtained solution and convergence speed toward other present procedure.


Author(s):  
Bernard K.S. Cheung

Genetic algorithms have been applied in solving various types of large-scale, NP-hard optimization problems. Many researchers have been investigating its global convergence properties using Schema Theory, Markov Chain, etc. A more realistic approach, however, is to estimate the probability of success in finding the global optimal solution within a prescribed number of generations under some function landscapes. Further investigation reveals that its inherent weaknesses that affect its performance can be remedied, while its efficiency can be significantly enhanced through the design of an adaptive scheme that integrates the crossover, mutation and selection operations. The advance of Information Technology and the extensive corporate globalization create great challenges for the solution of modern supply chain models that become more and more complex and size formidable. Meta-heuristic methods have to be employed to obtain near optimal solutions. Recently, a genetic algorithm has been reported to solve these problems satisfactorily and there are reasons for this.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 758
Author(s):  
Andrea Ferigo ◽  
Giovanni Iacca

The ever-increasing complexity of industrial and engineering problems poses nowadays a number of optimization problems characterized by thousands, if not millions, of variables. For instance, very large-scale problems can be found in chemical and material engineering, networked systems, logistics and scheduling. Recently, Deb and Myburgh proposed an evolutionary algorithm capable of handling a scheduling optimization problem with a staggering number of variables: one billion. However, one important limitation of this algorithm is its memory consumption, which is in the order of 120 GB. Here, we follow up on this research by applying to the same problem a GPU-enabled “compact” Genetic Algorithm, i.e., an Estimation of Distribution Algorithm that instead of using an actual population of candidate solutions only requires and adapts a probabilistic model of their distribution in the search space. We also introduce a smart initialization technique and custom operators to guide the search towards feasible solutions. Leveraging the compact optimization concept, we show how such an algorithm can optimize efficiently very large-scale problems with millions of variables, with limited memory and processing power. To complete our analysis, we report the results of the algorithm on very large-scale instances of the OneMax problem.


2012 ◽  
Vol 217-219 ◽  
pp. 1444-1448
Author(s):  
Xiang Ke Tian ◽  
Jian Wang

The job-shop scheduling problem (JSP), which is one of the best-known machine scheduling problems, is among the hardest combinatorial optimization problems. In this paper, the key technology of building simulation model in Plant Simulation is researched and also the build-in genetic algorithm of optimizing module is used to optimize job-shop scheduling, which can assure the scientific decision. At last, an example is used to illustrate the optimization process of the Job-Shop scheduling problem with Plant Simulation genetic algorithm modules.


Sign in / Sign up

Export Citation Format

Share Document