scholarly journals Combination of Smartphone MEMS Sensors and Environmental Prior Information for Pedestrian Indoor Positioning

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2263
Author(s):  
Lu Huang ◽  
Hongsheng Li ◽  
Baoguo Yu ◽  
Xingli Gan ◽  
Boyuan Wang ◽  
...  

In view of the inability of Global Navigation Satellite System (GNSS) to provide accurate indoor positioning services and the growing demand for location-based services, indoor positioning has become one of the most attractive research areas. Moreover, with the improvement of the smartphone hardware level, the rapid development of deep learning applications on mobile terminals has been promoted. Therefore, this paper borrows relevant ideas to transform indoor positioning problems into problems that can be solved by artificial intelligence algorithms. First, this article reviews the current mainstream pedestrian dead reckoning (PDR) optimization and improvement methods, and based on this, uses the micro-electromechanical systems (MEMS) sensor on a smartphone to achieve better step detection, stride length estimation, and heading estimation modules. In the real environment, an indoor continuous positioning system based on a smartphone is implemented. Then, in order to solve the problem that the PDR algorithm has accumulated errors for a long time, a calibration method is proposed without the need to deploy any additional equipment. An indoor turning point feature detection model based on deep neural network is designed, and the accuracy of turning point detection is 98%. Then, the particle filter algorithm is used to fuse the detected turning point and the PDR positioning result, thereby realizing lightweight cumulative error calibration. In two different experimental environments, the performance of the proposed algorithm and the commonly used localization algorithm are compared through a large number of experiments. In a small-scale indoor office environment, the average positioning accuracy of the algorithm is 0.14 m, and the error less than 1 m is 100%. In a large-scale conference hall environment, the average positioning accuracy of the algorithm is 1.29 m, and 65% of the positioning errors are less than 1.50 m which verifies the effectiveness of the proposed algorithm. The simple and lightweight indoor positioning design scheme proposed in this article is not only easy to popularize, but also provides new ideas for subsequent scientific research in the field of indoor positioning.

2014 ◽  
Vol 989-994 ◽  
pp. 2232-2236 ◽  
Author(s):  
Jia Zhi Dong ◽  
Yu Wen Wang ◽  
Feng Wei ◽  
Jiang Yu

Currently, there is an urgent need for indoor positioning technology. Considering the complexity of indoor environment, this paper proposes a new positioning algorithm (N-CHAN) via the analysis of the error of arrival time positioning (TOA) and the channels of S-V model. It overcomes an obvious shortcoming that the accuracy of traditional CHAN algorithm effected by no-line-of-sight (NLOS). Finally, though MATLAB software simulation, we prove that N-CHAN’s superior performance in NLOS in the S-V channel model, which has a positioning accuracy of centimeter-level and can effectively eliminate the influence of NLOS error on positioning accuracy. Moreover, the N-CHAN can effectively improve the positioning accuracy of the system, especially in the conditions of larger NLOS error.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4351 ◽  
Author(s):  
Ashraf ◽  
Hur ◽  
Park

The applications of location-based services require precise location information of a user both indoors and outdoors. Global positioning system’s reduced accuracy for indoor environments necessitated the initiation of Indoor Positioning Systems (IPSs). However, the development of an IPS which can determine the user’s position with heterogeneous smartphones in the same fashion is a challenging problem. The performance of Wi-Fi fingerprinting-based IPSs is degraded by many factors including shadowing, absorption, and interference caused by obstacles, human mobility, and body loss. Moreover, the use of various smartphones and different orientations of the very same smartphone can limit its positioning accuracy as well. As Wi-Fi fingerprinting is based on Received Signal Strength (RSS) vector, it is prone to dynamic intrinsic limitations of radio propagation, including changes over time, and far away locations having similar RSS vector. This article presents a Wi-Fi fingerprinting approach that exploits Wi-Fi Access Points (APs) coverage area and does not utilize the RSS vector. Using the concepts of APs coverage area uniqueness and coverage area overlap, the proposed approach calculates the user’s current position with the help of APs’ intersection area. The experimental results demonstrate that the device dependency can be mitigated by making the fingerprinting database with the proposed approach. The experiments performed at a public place proves that positioning accuracy can also be increased because the proposed approach performs well in dynamic environments with human mobility. The impact of human body loss is studied as well.


Author(s):  
Y. Cheng ◽  
Y. Yin ◽  
C. M. Li ◽  
W. Wu ◽  
P. P. Guo ◽  
...  

With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7269
Author(s):  
Ling Ruan ◽  
Ling Zhang ◽  
Tong Zhou ◽  
Yi Long

The weighted K-nearest neighbor algorithm (WKNN) is easily implemented, and it has been widely applied. In the large-scale positioning regions, using all fingerprint data in matching calculations would lead to high computation expenses, which is not conducive to real-time positioning. Due to signal instability, irrelevant fingerprints reduce the positioning accuracy when performing the matching calculation process. Therefore, selecting the appropriate fingerprint data from the database more quickly and accurately is an urgent problem for improving WKNN. This paper proposes an improved Bluetooth indoor positioning method using a dynamic fingerprint window (DFW-WKNN). The dynamic fingerprint window is a space range for local fingerprint data searching instead of universal searching, and it can be dynamically adjusted according to the indoor pedestrian movement and always covers the maximum possible range of the next positioning. This method was tested and evaluated in two typical scenarios, comparing two existing algorithms, the traditional WKNN and the improved WKNN based on local clustering (LC-WKNN). The experimental results show that the proposed DFW-WKNN algorithm enormously improved both the positioning accuracy and positioning efficiency, significantly, when the fingerprint data increased.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6598
Author(s):  
Long Cheng ◽  
Yong Wang ◽  
Mingkun Xue ◽  
Yangyang Bi

As a key technology of the Internet of Things, wireless sensor network (WSN) has been used widely in indoor localization systems. However, when the sensor is transmitting signals, it is affected by the non-line-of-sight (NLOS) transmission, and the accuracy of the positioning result is decreased. Therefore, solving the problem of NLOS positioning has become a major focus for indoor positioning. This paper focuses on solving the problem of NLOS transmission that reduces positioning accuracy in indoor positioning. We divided the anchor nodes into several groups and obtained the position information of the target node for each group through the maximum likelihood estimation (MLE). By identifying the NLOS method, a part of the position estimates polluted by NLOS transmission was discarded. For the position estimates that passed the hypothesis testing, a corresponding poly-probability matrix was established, and the probability of each position estimate from line-of-sight (LOS) and NLOS was calculated. The position of the target was obtained by combining the probability with the position estimate. In addition, we also considered the case where there was no continuous position estimation through hypothesis testing and through the NLOS tracking method to avoid positioning errors. Simulation and experimental results show that the algorithm proposed has higher positioning accuracy and higher robustness than other algorithms.


2019 ◽  
Vol 8 (6) ◽  
pp. 287 ◽  
Author(s):  
Zhu ◽  
Wu ◽  
Chen ◽  
Jing

The tremendous advance in information technology has promoted the rapid development of location-based services (LBSs), which play an indispensable role in people’s daily lives. Compared with a traditional LBS based on Point-Of-Interest (POI), which is an isolated location point, an increasing number of demands have concentrated on Region-Of-Interest (ROI) exploration, i.e., geographic regions that contain many POIs and express rich environmental information. The intention behind the POI is to search the geographical regions related to the user’s requirements, which contain some spatial objects, such as POIs and have certain environmental characteristics. In order to achieve effective ROI exploration, we propose an ROI top-k keyword query method that considers the environmental information of the regions. Specifically, the Word2Vec model has been introduced to achieve the distributed representation of POIs and capture their environmental semantics, which are then leveraged to describe the environmental characteristic information of the candidate ROI. Given a keyword query, different query patterns are designed to measure the similarities between the query keyword and the candidate ROIs to find the k candidate ROIs that are most relevant to the query. In the verification step, an evaluation criterion has been developed to test the effectiveness of the distributed representations of POIs. Finally, after generating the POI vectors in high quality, we validated the performance of the proposed ROI top-k query on a large-scale real-life dataset where the experimental results demonstrated the effectiveness of our proposals.


Author(s):  
Gints Jekabsons ◽  
Vadim Kairish ◽  
Vadim Zuravlyov

An Analysis of Wi-Fi Based Indoor Positioning AccuracyThe increasing demand for location based services inside buildings has made indoor positioning a significant research topic. This study deals with indoor positioning using the Wireless Ethernet IEEE 802.11 (Wireless Fidelity, Wi-Fi) standard that has a distinct advantage of low cost over other indoor wireless technologies. The aim of this study is to examine several aspects of location fingerprinting based indoor positioning that affect positioning accuracy. Overall, the positioning accuracy achieved in the performed experiments is 2.0 to 2.5 meters.


1989 ◽  
Vol 111 (2) ◽  
pp. 97-107 ◽  
Author(s):  
C. P. Wong

The rapid development of integrated circuit technology from small-scale integration (SSI) to very large scale integration (VLSI) has had great technological and economical impact on the electronics industry. The exponential growth of the number of components per IC chip, the exponential decrease of device dimensions, and the steady increase in IC chip size have imposed stringent requirements, not only on the IC physical design and fabrication, but also on IC encapsulants. This report addresses the purpose of encapsulation, encapsulation techniques, and a general overview of the application of inorganic and organic polymer materials as electronic device encapsulants.


2016 ◽  
Vol 12 (11) ◽  
pp. 80 ◽  
Author(s):  
Songbo Ji

<p class="Abstract"><span lang="EN-US">Aimed at solving the problem of local divergence and low data accuracy, this paper introduces a new Time Difference of Arrival(TDOA)-based localization algorithm (TBL) for the large-scale, high-density wireless sensor networks which are designed for real-time surveillance and unexpected incidents management. In particular, several means to improve the accuracy of distance measurement are investigated, and the TDOA method, based on the sound wave and electromagnetic wave to locate in the large-scale WSN, is discussed. Also, the well-designed circular location process has the advantage of better positioning accuracy and coverage percentage. Simulation results have confirmed the effectiveness of the formed TBL algorithm.</span></p>


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2341
Author(s):  
Rashid Ali Khan ◽  
Muhammad Faisal Abrar ◽  
Samad Baseer ◽  
Muhammad Faran Majeed ◽  
Muhammad Usman ◽  
...  

Agile software development methodologies have become the most popular software development methods in the last few years. These methodologies facilitate rapid development. The low cost and prioritized user satisfaction make these methodologies more attractive. These methodologies were also intended for small scale developmental teams. Therefore, challenges were encountered when these methodologies were used in large-scale development teams. This study was based on the identification of factors which were discovered in our previous study. Some of the factors included “leadership strong commitment and team autonomy”, “cooperative organizational culture”, and “team competency—agile development expertise”. A total of 147 practices were identified in this study via a systematic literature review. These practices will help practitioners and project managers to adopt agile software methodologies and encourage them to the enhance them.


Sign in / Sign up

Export Citation Format

Share Document