scholarly journals Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2403
Author(s):  
Jakub Browarczyk ◽  
Adam Kurowski ◽  
Bozena Kostek

The aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was performed on obtained signals. Welch’s method, autoregressive modeling, and discrete wavelet transform were used for feature extraction. Principal component analysis (PCA) was performed in order to reduce the dimensionality of feature vectors. k-Nearest Neighbors (kNN), Support Vector Machines (SVM), and Neural Networks (NN) were employed for classification. Precision, recall, F1 score, as well as a discussion based on statistical analysis, were shown. The paper also contains code utilized in preprocessing and the main part of experiments.

2020 ◽  
Vol 37 (5) ◽  
pp. 812-822
Author(s):  
Behnam Asghari Beirami ◽  
Mehdi Mokhtarzade

In this paper, a novel feature extraction technique called SuperMNF is proposed, which is an extension of the minimum noise fraction (MNF) transformation. In SuperMNF, each superpixel has its own transformation matrix and MNF transformation is performed on each superpixel individually. The basic idea behind the SuperMNF is that each superpixel contains its specific signal and noise covariance matrices which are different from the adjacent superpixels. The extracted features, owning spatial-spectral content and provided in the lower dimension, are classified by maximum likelihood classifier and support vector machines. Experiments that are conducted on two real hyperspectral images, named Indian Pines and Pavia University, demonstrate the efficiency of SuperMNF since it yielded more promising results than some other feature extraction methods (MNF, PCA, SuperPCA, KPCA, and MMP).


2010 ◽  
Vol 07 (04) ◽  
pp. 347-356
Author(s):  
E. SIVASANKAR ◽  
R. S. RAJESH

In this paper, Principal Component Analysis is used for feature extraction, and a statistical learning based Support Vector Machine is designed for functional classification of clinical data. Appendicitis data collected from BHEL Hospital, Trichy is taken and classified under three classes. Feature extraction transforms the data in the high-dimensional space to a space of fewer dimensions. The classification is done by constructing an optimal hyperplane that separates the members from the nonmembers of the class. For linearly nonseparable data, Kernel functions are used to map data to a higher dimensional space and there the optimal hyperplane is found. This paper works with different SVMs based on radial basis and polynomial kernels, and their performances are compared.


2013 ◽  
Vol 756-759 ◽  
pp. 4576-4580
Author(s):  
Xiao Li Yang ◽  
Qiong He ◽  
Fen Yang

This work studies on feature extraction for classification of proteomic profile. We evaluated four methods, including principal component analysis (PCA), independent component analysis (ICA), locally linear embedding (LLE) and weighted maximum margin criterion (WMMC). PCA, ICA and LLE extract features based on traditional low-dimension map technique. Comparatively, WMMC extracts features according to classification goal. To study classification performance of PCA, ICA, LLE and WMMC in detail, we used two well known classification methods, support vector machine (SVM) and Fisher discriminant analysis (FDA), to classify profiles. The results show WMMC having relatively good performance due to its prediction accuracy, sensitivity and specificity for diagnosis; it can correctly identify features with high discrimination ability from high-dimensional proteomic profile. When feature set size was reduced less than 10, PCA, ICA and LLE lose a lot of classification information, and the prediction accuracies are less than 90%. However, WMMC can extract most classification information. Its prediction accuracies, sensitivities and specificities are more than 95%. Obviously, WMMC is more suitable to proteomic profile classification. For classifier, FDA is sensible to feature extraction.


Author(s):  
Ke Li ◽  
Yalei Wu ◽  
Shimin Song ◽  
Yi sun ◽  
Jun Wang ◽  
...  

The measurement of spacecraft electrical characteristics and multi-label classification issues are generally including a large amount of unlabeled test data processing, high-dimensional feature redundancy, time-consumed computation, and identification of slow rate. In this paper, a fuzzy c-means offline (FCM) clustering algorithm and the approximate weighted proximal support vector machine (WPSVM) online recognition approach have been proposed to reduce the feature size and improve the speed of classification of electrical characteristics in the spacecraft. In addition, the main component analysis for the complex signals based on the principal component feature extraction is used for the feature selection process. The data capture contribution approach by using thresholds is furthermore applied to resolve the selection problem of the principal component analysis (PCA), which effectively guarantees the validity and consistency of the data. Experimental results indicate that the proposed approach in this paper can obtain better fault diagnosis results of the spacecraft electrical characteristics’ data, improve the accuracy of identification, and shorten the computing time with high efficiency.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tsun-Kuo Lin

This paper developed a principal component analysis (PCA)-integrated algorithm for feature identification in manufacturing; this algorithm is based on an adaptive PCA-based scheme for identifying image features in vision-based inspection. PCA is a commonly used statistical method for pattern recognition tasks, but an effective PCA-based approach for identifying suitable image features in manufacturing has yet to be developed. Unsuitable image features tend to yield poor results when used in conventional visual inspections. Furthermore, research has revealed that the use of unsuitable or redundant features might influence the performance of object detection. To address these problems, the adaptive PCA-based algorithm developed in this study entails the identification of suitable image features using a support vector machine (SVM) model for inspecting of various object images; this approach can be used for solving the inherent problem of detection that occurs when the extraction contains challenging image features in manufacturing processes. The results of experiments indicated that the proposed algorithm can successfully be used to adaptively select appropriate image features. The algorithm combines image feature extraction and PCA/SVM classification to detect patterns in manufacturing. The algorithm was determined to achieve high-performance detection and to outperform the existing methods.


Sign in / Sign up

Export Citation Format

Share Document