scholarly journals Evaluation of Salmon, Tuna, and Beef Freshness Using a Portable Spectrometer

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4299 ◽  
Author(s):  
Eui Jung Moon ◽  
Youngsik Kim ◽  
Yu Xu ◽  
Yeul Na ◽  
Amato J. Giaccia ◽  
...  

There has been strong demand for the development of an accurate but simple method to assess the freshness of food. In this study, we demonstrated a system to determine food freshness by analyzing the spectral response from a portable visible/near-infrared (VIS/NIR) spectrometer using the Convolutional Neural Network (CNN)-based machine learning algorithm. Spectral response data from salmon, tuna, and beef incubated at 25 °C were obtained every minute for 30 h and then categorized into three states of “fresh”, “likely spoiled”, and “spoiled” based on time and pH. Using the obtained spectral data, a CNN-based machine learning algorithm was built to evaluate the freshness of experimental objects. In addition, a CNN-based machine learning algorithm with a shift-invariant feature can minimize the effect of the variation caused using multiple devices in a real environment. The accuracy of the obtained machine learning model based on the spectral data in predicting the freshness was approximately 85% for salmon, 88% for tuna, and 92% for beef. Therefore, our study demonstrates the practicality of a portable spectrometer in food freshness assessment.

2021 ◽  
Vol 64 (2) ◽  
pp. 521-527
Author(s):  
Jinshi Cui ◽  
Chengxun Cui

HighlightsWhile freshness is a critical value of food quality, its assessment requires complex methods, which are costly and time-consuming.In this work, it is demonstrated that spectral responses obtained from a portable VIS/NIR imaging spectrometer can be used to predict food freshness using a CNN-based machine learning algorithm.In the food industry, the method can assess real-time food freshness nondestructively and cost-effectively.Abstract. There has been strong demand for the development of accurate but simple methods to assess the freshness of foods. In this study, a system is proposed to determine the freshness of fish by analyzing the spectral response with a portable visible/near-infrared (VIS/NIR) imaging spectrometer and a convolution neural network (CNN) machine learning algorithm. Spectral response data from salmon and tuna, which were incubated at 25°C, were obtained every minute for 30 h and were categorized into three stages (fresh, likely spoiled, or spoiled) based on the time and pH. Using the obtained spectral data, a CNN-based machine learning algorithm was built to evaluate the freshness of the experimental samples. The accuracy of the spectral data in predicting the freshness was ~84% for salmon and ~88% for tuna. Keywords: CNN, Fish, Freshness, pH, Spectral data, VIS/NIR.


2021 ◽  
Author(s):  
Oliver Dixon ◽  
William McCarthy ◽  
Nasser Madani ◽  
Michael Petronis ◽  
Steve McRobbie ◽  
...  

<p>Copper is one of the most important critical metal resources needed to achieve carbon neutrality with a projected increase in demand of >300% over the next half century from electronics and renewables.  Porphyry deposits account for most of the global copper production, but the discovery of new reserves is ever more challenging. Machine learning presents an opportunity to cross reference new and traditionally under-utilised data sets with a view to developing quantitative predictive models of hydrothermal alteration zones to guide new, ambitious exploration programs.</p><p>The aim of this study is to demonstrate a new alteration classification scheme driven by quantitative magnetic and spectral data to feed a machine learning algorithm. The benefits of an alteration model based on quantitative data rather than subjective observations by geologists, are that there is no bias in the data collected, the arising model is quantifiable and therefore easy to model and the process be fully automated. Ultimately, this approach aids more detailed exploration and mine modelling, in turn, reducing the extraction process carbon footprint and more effectively identifying new deposits.</p><p>Presented here are magnetic susceptibility and shortwave infrared (SWIR) data collected from the KazMinerals plc. owned Aktogay Cu-Mo giant porphyry deposit, eastern Kazakhstan, which has a throughput of 30Mtpa of ore. These data are cross referenced using a newly developed machine learning algorithm. Generated autonomously, our results reveal twelve statistically and geologically significant clusters that define a new alteration classification for porphyry style mineralisation. Results are entirely non-subjective, reproducible, quantitative and modellable.</p><p>Importantly, magnetic susceptibility measurements improve the algorithm’s ability to identify clusters by between 29-36%; enhancing the sophistication of the included magnetic data promises to yield substantially better statistical results. Magnetic remanence data are therefore being complied on representative samples from each of the twelve identified clusters, including hysteresis, isothermal remanent magnetisation (IRM) acquisition, FORC measurements, natural remanent magnetisation (NRM) and anhysteretic remanent magnetisation (ARM). Through collaboration with industry partners, we aim to develop an automated means of collecting these magnetic remanence data to accompany the machine learning algorithm.</p>


2021 ◽  
Author(s):  
Aria Abubakar ◽  
Mandar Kulkarni ◽  
Anisha Kaul

Abstract In the process of deriving the reservoir petrophysical properties of a basin, identifying the pay capability of wells by interpreting various geological formations is key. Currently, this process is facilitated and preceded by well log correlation, which involves petrophysicists and geologists examining multiple raw log measurements for the well in question, indicating geological markers of formation changes and correlating them with those of neighboring wells. As it may seem, this activity of picking markers of a well is performed manually and the process of ‘examining’ may be highly subjective, thus, prone to inconsistencies. In our work, we propose to automate the well correlation workflow by using a Soft- Attention Convolutional Neural Network to predict well markers. The machine learning algorithm is supervised by examples of manual marker picks and their corresponding occurrence in logs such as gamma-ray, resistivity and density. Our experiments have shown that, specifically, the attention mechanism allows the Convolutional Neural Network to look at relevant features or patterns in the log measurements that suggest a change in formation, making the machine learning model highly precise.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Noemí DeCastro-García ◽  
Ángel Luis Muñoz Castañeda ◽  
David Escudero García ◽  
Miguel V. Carriegos

Selecting the best configuration of hyperparameter values for a Machine Learning model yields directly in the performance of the model on the dataset. It is a laborious task that usually requires deep knowledge of the hyperparameter optimizations methods and the Machine Learning algorithms. Although there exist several automatic optimization techniques, these usually take significant resources, increasing the dynamic complexity in order to obtain a great accuracy. Since one of the most critical aspects in this computational consume is the available dataset, among others, in this paper we perform a study of the effect of using different partitions of a dataset in the hyperparameter optimization phase over the efficiency of a Machine Learning algorithm. Nonparametric inference has been used to measure the rate of different behaviors of the accuracy, time, and spatial complexity that are obtained among the partitions and the whole dataset. Also, a level of gain is assigned to each partition allowing us to study patterns and allocate whose samples are more profitable. Since Cybersecurity is a discipline in which the efficiency of Artificial Intelligence techniques is a key aspect in order to extract actionable knowledge, the statistical analyses have been carried out over five Cybersecurity datasets.


2021 ◽  
Author(s):  
Rushad Ravilievich Rakhimov ◽  
Oleg Valerievich Zhdaneev ◽  
Konstantin Nikolaevich Frolov ◽  
Maxim Pavlovich Babich

Abstract The ultimate objective of this paper is to describe the experience of using a machine learning model prepared by the ensemble method to prevent stuck pipe events during well construction process on extended reach wells. The tasks performed include collecting, analyzing and cleaning historical data, selecting and preparing a machine learning model, testing it on real-time data by means of desktop application. The idea is to display the solution at the rig floor, allowing Driller to quickly take actions for prevention of stuck pipe event. Historical data mining and analysis were performed using software for remote monitoring. Preparation, labelling and cleaning of historical and real-time data were executed using programmable scripts and big data techniques. The machine learning algorithm was developed using the ensemble method, which allows to combine several models to improve the final result. On the field of interest, the most common type of stuck pipe are solids induced pack offs. They occur due to insufficient hole cleaning from drilled cuttings and wellbore collapse due to rocks instability. Stuck pipe prevention on extended reach drilling (ERD) wells requires holistic approach meanwhile final role is assigned to the driller. Due to continuously exceeding ERD envelope and increased workloads on both personnel and drilling equipment, the effectiveness of preventing accidents is deteriorating. This leads to severe consequences: Bottom Hole Assembly lost in hole, the necessity to re-drill the bore and eventually to increased Non-Productive Time (NPT). Developed application based on ensemble machine learning algorithm shows prediction accuracy above 94%. Reacting on alarms, driller can quickly take measures to prevent downhole accidents during well construction of ERD wells.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 400 ◽  
Author(s):  
Thuy Nguyen Thi Thu ◽  
Vuong Dang Xuan

The exchange rate of each money pair can be predicted by using machine learning algorithm during classification process. With the help of supervised machine learning model, the predicted uptrend or downtrend of FoRex rate might help traders to have right decision on FoRex transactions. The installation of machine learning algorithms in the FoRex trading online market can automatically make the transactions of buying/selling. All the transactions in the experiment are performed by using scripts added-on in transaction application. The capital, profits results of use support vector machine (SVM) models are higher than the normal one (without use of SVM). 


Sign in / Sign up

Export Citation Format

Share Document