The Sensitive Element of Acoustic Sensor on Circular Polarized Waves: From Theoretical Considerations towards Perspective Rotation Rate Sensors Design
In this paper, the perspectives of using the features of acoustic wave propagation to design rotation rate sensors (RRS) are discussed. The possibility of developing the solid-state sensitive elements (SE) of RRS on acoustic waves of circular polarization is shown. The theoretical basis of bulk acoustic wave propagation under rotation is given. The direct excitation of circularly polarized acoustic wave (CPAW) is considered, the design of the CPAW emitting transducer is offered. The results of experimental studies that indicated the circular nature of the particle motions in the radiated wave are discussed. The principally new concept of the RRS SE design on CPAW, being able to operate under high vibration and acceleration, is proposed. The experimental results revealed a high correlation with theoretical and numerical predictions and confirmed RRS on CPAW operability.