scholarly journals Highly Sensitive Levodopa Determination by Means of Adsorptive Stripping Voltammetry on Ruthenium Dioxide-Carbon Black-Nafion Modified Glassy Carbon Electrode

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 60
Author(s):  
Anna Górska ◽  
Beata Paczosa-Bator ◽  
Robert Piech

A new, highly sensitive Adsorptive Stripping Voltammetric method for levodopa determination was developed. As a working electrode, the glassy carbon electrode (GCE) modified with carbon black (CB), RuO2·xH2O (RuO2) and Nafion was used (CB-RuO2-Nafion GCE). Levodopa signal obtained on the modified electrode was 12 times higher compared to GCE. During research, instrumental parameters were optimized: sampling time ts = 10 ms, waiting time tw = 10 ms, step potential Es = 5 mV and pulse amplitude ΔE = 50 mV. Preconcentration potential Eprec was equal to 0 mV. The best results were obtained in 0.025 M perchloric acid (approx. pH 1.4). Signal repeatability measured on the CB-RuO2-Nafion modified electrode for 0.2 µM of levodopa was equal to 2.1% (levodopa concentration 1 µM, n = 5). Linearity of the method was achieved in the concentration range from 1 to 8 µM. Limit of detection was equal to 17 nM. Recoveries calculated for pharmaceutical products and tap water measurements were in the range 102–105%, which confirms the accuracy of the developed. The applicability of the method was confirmed by analysis of pharmaceutical products and tap water samples. Based on obtained results, it might be concluded that the developed voltammetric method could be a useful tool in routine drug analysis.

2021 ◽  
Author(s):  
Marcelina Łysoń ◽  
Anna Górska ◽  
Beata Paczosa-Bator ◽  
Robert Piech

AbstractAdsorptive Stripping Voltammetric method for Nimesulide (NIM) determination was developed. As a working electrode, glassy carbon electrode (GCE) modified with carbon black and Nafion (CB-Nafion GCE) was used. All measurements were carried out in 0.1 M acetate buffer (pH 4.6). Conducted experiments allowed to optimize differential pulse voltammetry (DPV) instrumental parameters: sampling and waiting time ts = tw = 10 ms, step potential Es = 4 mV, and pulse amplitude ΔE = 50 mV. The best results were obtained for preconcentration potential and time equal to 400 mV and 20 s, respectively. Limit of detection was calculated and was equal to 0.14 µM for 20-s preconcentration time and 0.06 µM for 40-s preconcentration time. In order to prove the applicability of the developed method, concentration of nimesulide in pharmaceutical products was determined. Calculated recoveries were in the range 94–99%, which indicates that the method might be assumed as accurate. Coefficient of variation was equal to 5.0% (n = 7, NIM concentration 1 µM) Obtained results of NIM determination were in good agreement with the content declared by producers.


2020 ◽  
Vol 16 (2) ◽  
pp. 176-183 ◽  
Author(s):  
Ersin Demir ◽  
Ahmet Senocak ◽  
Mouhoum F. Tassembedo-Koubangoye ◽  
Erhan Demirbas ◽  
Hassan Y. Aboul-Eneın

Background: The total antioxidant capacity of yam food grown in southern African regions was investigated by a polyglycine-glassy carbon modified electrode. The modified electrode was fabricated using glycine solution on glassy carbon electrode by electrodeposition method. The proposed modified electrode is found to be nearly 3.15-fold more sensitive than the bare electrode. For the measurement of the total antioxidants of yam, differential pulse stripping voltammetry (DPSV) was employed with standard quercetin compound. Methods: The total antioxidant capacity of yam was deduced by DPSV and cyclic voltammetry (CV) methods. The basic parameters for the stripping technique such as pH, accumulation time and accumulation potential were optimized as 20 s, 200 mV and a pH of 3 Britton-Robinson (B-R) buffer solutions in 0.5 mg quercetin/L, respectively. Results: In the optimization condition, the linear working range was determined between 5.0 μg/L and 80.0 µg/L for the quercetin. The detection (LOD) and quantification (LOQ) limits of quercetin were found to be 0.39 µg/L and 1.39 µg/L on the modified electrode by DPSV, respectively. The procedure was also applied to natural yam samples and total antioxidant capacity of 0.1 kg of yam was determined as 96.15 ± 0.85 µg/L of equivalent quercetin at 95% confidence level with the relative standard deviations of 0.88%. Conclusion: Sensitive and selective voltammetric method was developed for the determination of total antioxidant capacity in yam. Moreover, the modified polyglycine-glassy carbon electrode was constructed more selectively for quercetin. As a result, a simple, sensitive and rapid new voltammetric method for the determination of antioxidants has been developed using the modified electrode.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7763
Author(s):  
Tatjana Kulikova ◽  
Anna Porfireva ◽  
Alexey Rogov ◽  
Gennady Evtugyn

Electrochemical DNA sensors offer unique opportunities for the sensitive detection of specific DNA interactions. In this work, a voltametric DNA sensor is proposed on the base of glassy carbon electrode modified with carbon black, adsorbed acridine yellow and DNA for highly sensitive determination of doxorubicin antitumor drug. The signal recorded by cyclic voltammetry was attributed to irreversible oxidation of the dye. Its value was altered by aggregation of the hydrophobic dye molecules on the carbon black particles. DNA molecules promote disaggregation of the dye and increased the signal. This effect was partially suppressed by doxorubicin compensate for the charge of DNA in the intercalation. Sensitivity of the signal toward DNA and doxorubicin was additionally increased by treatment of the layer with dimethylformamide. In optimal conditions, the linear range of doxorubicin concentrations determined was 0.1 pM–1.0 nM, and the detection limit was 0.07 pM. No influence of sulfonamide medicines and plasma electrolytes on the doxorubicin determination was shown. The DNA sensor was tested on two medications (doxorubicin-TEVA and doxorubicin-LANS) and showed recoveries of 102–105%. The DNA sensor developed can find applications in the determination of drug residues in blood and for the pharmacokinetics studies.


RSC Advances ◽  
2017 ◽  
Vol 7 (1) ◽  
pp. 535-542 ◽  
Author(s):  
Jianzhi Huang ◽  
Xiaolei Shen ◽  
Ruili Wang ◽  
Qiang Zeng ◽  
Lishi Wang

A sensitively electrochemical metronidazole sensor basing on a Pt nanospheres/polyfurfural modified glassy carbon electrode.


2017 ◽  
Vol 9 (47) ◽  
pp. 6662-6668 ◽  
Author(s):  
M. Ławrywianiec ◽  
J. Smajdor ◽  
B. Paczosa-Bator ◽  
R. Piech

A novel highly sensitive voltammetric quetiapine fumarate (QF) sensor based on a glassy carbon electrode (GCE) modified with carbon black nanoparticles (CB) was successfully developed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pattan-Siddappa Ganesh ◽  
Ganesh Shimoga ◽  
Seok-Han Lee ◽  
Sang-Youn Kim ◽  
Eno E. Ebenso

Abstract Background A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers. Methods The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques. Results The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon. Conclusions The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed. Graphical abstract Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.


Sign in / Sign up

Export Citation Format

Share Document