scholarly journals Integration of 3D Printed Flexible Pressure Sensors into Physical Interfaces for Wearable Robots

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2157
Author(s):  
Kevin Langlois ◽  
Ellen Roels ◽  
Gabriël Van De Velde ◽  
Cláudia Espadinha ◽  
Christopher Van Vlerken ◽  
...  

Sensing pressure at the physical interface between the robot and the human has important implications for wearable robots. On the one hand, monitoring pressure distribution can give valuable benefits on the aspects of comfortability and safety of such devices. Additionally, on the other hand, they can be used as a rich sensory input to high level interaction controllers. However, a problem is that the commercial availability of this technology is mostly limited to either low-cost solutions with poor performance or expensive options, limiting the possibilities for iterative designs. As an alternative, in this manuscript we present a three-dimensional (3D) printed flexible capacitive pressure sensor that allows seamless integration for wearable robotic applications. The sensors are manufactured using additive manufacturing techniques, which provides benefits in terms of versatility of design and implementation. In this study, a characterization of the 3D printed sensors in a test-bench is presented after which the sensors are integrated in an upper arm interface. A human-in-the-loop calibration of the sensors is then shown, allowing to estimate the external force and pressure distribution that is acting on the upper arm of seven human subjects while performing a dynamic task. The validation of the method is achieved by means of a collaborative robot for precise force interaction measurements. The results indicate that the proposed sensors are a potential solution for further implementation in human–robot interfaces.

2020 ◽  
Vol 8 (4) ◽  
pp. 296-307
Author(s):  
Konstantin Krestovnikov ◽  
Aleksei Erashov ◽  
Аleksandr Bykov

This paper presents development of pressure sensor array with capacitance-type unit sensors, with scalable number of cells. Different assemblies of unit pressure sensors and their arrays were considered, their characteristics and fabrication methods were investigated. The structure of primary pressure transducer (PPT) array was presented; its operating principle of array was illustrated, calculated reference ratios were derived. The interface circuit, allowing to transform the changes in the primary transducer capacitance into voltage level variations, was proposed. A prototype sensor was implemented; the dependency of output signal power from the applied force was empirically obtained. In the range under 30 N it exhibited a linear pattern. The sensitivity of the array cells to the applied pressure is in the range 134.56..160.35. The measured drift of the output signals from the array cells after 10,000 loading cycles was 1.39%. For developed prototype of the pressure sensor array, based on the experimental data, the average signal-to-noise ratio over the cells was calculated, and equaled 63.47 dB. The proposed prototype was fabricated of easily available materials. It is relatively inexpensive and requires no fine-tuning of each individual cell. Capacitance-type operation type, compared to piezoresistive one, ensures greater stability of the output signal. The scalability and adjustability of cell parameters are achieved with layered sensor structure. The pressure sensor array, presented in this paper, can be utilized in various robotic systems.


Author(s):  
Christian Raab ◽  
Kai Rohde-Brandenburger

AbstractThe determination of structural loads plays an important role in the certification process of new aircraft. Strain gauges are usually used to measure and monitor the structural loads encountered during the flight test program. However, a time-consuming wiring and calibration process is required to determine the forces and moments from the measured strains. Sensors based on MEMS provide an alternative way to determine loads from the measured aerodynamic pressure distribution around the structural component. Flight tests were performed with a research glider aircraft to investigate the flight loads determined with the strain based and the pressure based measurement technology. A wing glove equipped with 64 MEMS pressure sensors was developed for measuring the pressure distribution around a selected wing section. The wing shear force determined with both load determination methods were compared to each other. Several flight maneuvers with varying loads were performed during the flight test program. This paper concentrates on the evaluation of dynamic flight maneuvers including Stalls and Pull-Up Push-Over maneuvers. The effects of changes in the aerodynamic flow characteristics during the maneuver could be detected directly with the pressure sensors based on MEMS. Time histories of the measured pressure distributions and the wing shear forces are presented and discussed.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5032
Author(s):  
Alec Ikei ◽  
James Wissman ◽  
Kaushik Sampath ◽  
Gregory Yesner ◽  
Syed N. Qadri

In the functional 3D-printing field, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) has been shown to be a more promising choice of material over polyvinylidene fluoride (PVDF), due to its ability to be poled to a high level of piezoelectric performance without a large mechanical strain ratio. In this work, a novel presentation of in situ 3D printing and poling of PVDF-TrFE is shown with a d33 performance of up to 18 pC N−1, more than an order of magnitude larger than previously reported in situ poled polymer piezoelectrics. This finding paves the way forward for pressure sensors with much higher sensitivity and accuracy. In addition, the ability of in situ pole sensors to demonstrate different performance levels is shown in a fully 3D-printed five-element sensor array, accelerating and increasing the design space for complex sensing arrays. The in situ poled sample performance was compared to the performance of samples prepared through an ex situ corona poling process.


Author(s):  
Lebogang Lebea ◽  
Harry M Ngwangwa ◽  
Dawood Desai ◽  
Fuluphelo Nemavhola

The initial stability after implantology is paramount to the survival of the dental implant and the surface roughness of the implant plays a vital role in this regard. The characterisation of surface topography is a complicated branch of metrology, with a huge range of parameters available. Each parameter contributes significantly towards the survival and mechanical properties of 3D-printed specimens. The purpose of this paper is to experimentally investigate the effect of surface roughness of 3D-printed dental implants and 3D-printed dogbone tensile samples under areal height (Ra) parameters, amplitude parameters (average of ordinates), skewness (Rsk) parameters and mechanical properties. During the experiment, roughness values were analysed and the results showed that the skewness parameter demonstrated a minimum value of 0.596%. The 3D-printed dental implant recorded Ra with a 3.4 mm diameter at 43.23% and the 3D-printed dental implant with a 4.3 mm diameter at 26.18%. Samples with a complex geometry exhibited a higher roughness surface, which was the greatest difficulty of additive manufacturing when evaluating surface finish. The results show that when the ultimate tensile stress (UTS) decreases from 968.35 MPa to 955.25 MPa, Ra increases by 1.4% and when UTS increases to 961.18 MPa, Ra increases by 0.6%. When the cycle decreases from 262142 to 137433, Ra shows that less than a 90.74% increase in cycle is obtained. For 3D-printed dental implants, the higher the surface roughness, the lower the mechanical properties, ultimately leading to decreased implant life and poor performance.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1509 ◽  
Author(s):  
Krzysztof Adamski ◽  
Bartosz Kawa ◽  
Rafał Walczak

In this paper we present a 3D printed flow meter based on venturri effect. Dimensions of the microchannels are 800 µm for wider and 400 µm for thinker channel. Application of different type of sensors was investigated: differential, absolute and digital barometer. Results of measurement of differential pressure and calculation of liquid flow are shown. Presented microfluidics device can be also easy adapted for modular systems. Presented flow meter is the first integration of commercial available sensors and 3D printed microfluidics structure in a single chip.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1412 ◽  
Author(s):  
Young Jung ◽  
Wookjin Lee ◽  
Kyungkuk Jung ◽  
Byunggeon Park ◽  
Jinhyoung Park ◽  
...  

In recent times, polymer-based flexible pressure sensors have been attracting a lot of attention because of their various applications. A highly sensitive and flexible sensor is suggested, capable of being attached to the human body, based on a three-dimensional dielectric elastomeric structure of polydimethylsiloxane (PDMS) and microsphere composite. This sensor has maximal porosity due to macropores created by sacrificial layer grains and micropores generated by microspheres pre-mixed with PDMS, allowing it to operate at a wider pressure range (~150 kPa) while maintaining a sensitivity (of 0.124 kPa−1 in a range of 0~15 kPa) better than in previous studies. The maximized pores can cause deformation in the structure, allowing for the detection of small changes in pressure. In addition to exhibiting a fast rise time (~167 ms) and fall time (~117 ms), as well as excellent reproducibility, the fabricated pressure sensor exhibits reliability in its response to repeated mechanical stimuli (2.5 kPa, 1000 cycles). As an application, we develop a wearable device for monitoring repeated tiny motions, such as the pulse on the human neck and swallowing at the Adam’s apple. This sensory device is also used to detect movements in the index finger and to monitor an insole system in real-time.


2011 ◽  
Vol 27 (3) ◽  
pp. 258-265 ◽  
Author(s):  
Yanxin Zhang ◽  
David G. Lloyd ◽  
Amity C. Campbell ◽  
Jacqueline A. Alderson

The purpose of this study was to quantify the effect of soft tissue artifact during three-dimensional motion capture and assess the effectiveness of an optimization method to reduce this effect. Four subjects were captured performing upper-arm internal-external rotation with retro-reflective marker sets attached to their upper extremities. A mechanical arm, with the same marker set attached, replicated the tasks human subjects performed. Artificial sinusoidal noise was then added to the recorded mechanical arm data to simulate soft tissue artifact. All data were processed by an optimization model. The result from both human and mechanical arm kinematic data demonstrates that soft tissue artifact can be reduced by an optimization model, although this error cannot be successfully eliminated. The soft tissue artifact from human subjects and the simulated soft tissue artifact from artificial sinusoidal noise were demonstrated to be considerably different. It was therefore concluded that the kinematic noise caused by skin movement artifact during upper-arm internal-external rotation does not follow a sinusoidal pattern and cannot be effectively eliminated by an optimization model.


Author(s):  
Jinsheng Fan ◽  
David Gonzalez ◽  
Jose Garcia ◽  
Brittany Newell ◽  
Robert A. Nawrocki

Abstract Mechanical flexibility, faster processing, lower fabrication cost and biocompatibility enable poly (vinylidene fluoride) (PVdF) to have a wide range of applications. This work investigated the use of a piezoelectric polymeric material, PVdF, in combination with 3D printing, to explore new strategies for the fabrication of smart materials with embedded functions, namely sensing. The motivation behind this research was to design and fabricate PVdF thin films that will be used to build pressure sensors with applications in active intelligent structures. In this work, 3D printed PVdF thin films with thickness values in the range of 250 to 350 μm were poled under high direct current electrical fields, which were varied from 0.4 to 12 MV/m and temperatures from 80 to 140 °C. Copper electrodes were applied, forming a standard capacitor layered structure, to facilitate poling and to collect piezoelectric output voltage. The poling process enabled the piezoelectric crystalline phase transition of printed PVdF films to transfer from the non-active a α-phase to the piezoelectric active β-phase and rearranged the dipole alignments of the β-phase. The efficiency of poling was evaluated through the piezoelectric constant calculated from measured calibration curves. These calibration curves demonstrated the PVdF sensing device have a positive linear correlation between mechanical input and voltage output. We found that a peak value in piezoelectric constant correlated with poling voltages and temperatures. The highest piezoelectric constant achieved through contact poling was 32.29 pC/N poled at 750 V and 120 °C, and temperature was deemed the most important factors to influence piezoelectric constant. We believe that the present work demonstrates a path towards fully 3D printed smart, functional materials.


Sign in / Sign up

Export Citation Format

Share Document