scholarly journals Hyperspectral Three-Dimensional Fluorescence Imaging Using Snapshot Optical Tomography

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3652
Author(s):  
Cory Juntunen ◽  
Isabel M. Woller ◽  
Yongjin Sung

Hyperspectral three-dimensional (3D) imaging can provide both 3D structural and functional information of a specimen. The imaging throughput is typically very low due to the requirement of scanning mechanisms for different depths and wavelengths. Here we demonstrate hyperspectral 3D imaging using Snapshot projection optical tomography (SPOT) and Fourier-transform spectroscopy (FTS). SPOT allows us to instantaneously acquire the projection images corresponding to different viewing angles, while FTS allows us to perform hyperspectral imaging at high spectral resolution. Using fluorescent beads and sunflower pollens, we demonstrate the imaging performance of the developed system.

2011 ◽  
Vol 45 (1) ◽  
pp. 27-56 ◽  
Author(s):  
Lu Gan ◽  
Grant J. Jensen

AbstractThe electron microscope has contributed deep insights into biological structure since its invention nearly 80 years ago. Advances in instrumentation and methodology in recent decades have now enabled electron tomography to become the highest resolution three-dimensional (3D) imaging technique available for unique objects such as cells. Cells can be imaged either plastic-embedded or frozen-hydrated. Then the series of projection images are aligned and back-projected to generate a 3D reconstruction or ‘tomogram’. Here, we review how electron tomography has begun to reveal the molecular organization of cells and how the existing and upcoming technologies promise even greater insights into structural cell biology.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3563
Author(s):  
Zekun Jiao ◽  
Chibiao Ding ◽  
Longyong Chen ◽  
Fubo Zhang

The problem of synthesis scatterers in inverse synthetic aperture radar (ISAR) make it difficult to realize high-resolution three-dimensional (3D) imaging. Radar array provides an available solution to this problem, but the resolution is restricted by limited aperture size and number of antennas, leading to deterioration of the 3D imaging performance. To solve these problems, we propose a novel 3D imaging method with an array ISAR system based on sparse Bayesian inference. First, the 3D imaging model using a sparse linear array is introduced. Then the elastic net estimation and Bayesian information criterion are introduced to fulfill model order selection automatically. Finally, the sparse Bayesian inference is adopted to realize super-resolution imaging and to get the 3D image of target of interest. The proposed method is used to process real radar data of a Ku band array ISAR system. The results show that the proposed method can effectively solve the problem of synthesis scatterers and realize super-resolution 3D imaging, which verify the practicality of our proposed method.


Nanophotonics ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 489-495 ◽  
Author(s):  
Anna Labno ◽  
Christopher Gladden ◽  
Jeongmin Kim ◽  
Dylan Lu ◽  
Xiaobo Yin ◽  
...  

AbstractThree-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.


2018 ◽  
Vol 232 ◽  
pp. 02044
Author(s):  
Zibo Zhou ◽  
Libing Jiang ◽  
Zhuang Wang

Image registration is a key intermediate step for Interferometric Inverse Synthetic Aperture Radar (InISAR) three-dimensional (3D) imaging. It arranges the same scatterers of the target on the same pixel cell in different ISAR images, which makes the interferometric processing carried on between the same scatterers to obtain its 3D coordinates. This paper proposes a novel ISAR image registration method of three steps. Firstly, chirp Fourier transform is used to estimate the rotational angular velocity of the target. Secondly, the compensation phase is constructed, according to the rotational angular velocity, to eliminate the wave path difference between different radars echoes. Finally, two-dimensional (2D) Fourier transform is used to yield registered ISAR images. The proposed method achieves the ISAR image registration through phase compensation in echo field, therefore, no extra computation is needed in image field. The experiment results demonstrate the advantages of the proposed method in precision, computation efficiency and practicability.


Author(s):  
D.W. Andrews ◽  
F.P. Ottensmeyer

Shadowing with heavy metals has been used for many years to enhance the topological features of biological macromolecular complexes. The three dimensional features present in directionaly shadowed specimens often simplifies interpretation of projection images provided by other techniques. One difficulty with the method is the relatively large amount of metal used to achieve sufficient contrast in bright field images. Thick shadow films are undesirable because they decrease resolution due to an increased tendency for microcrystalline aggregates to form, because decoration artefacts become more severe and increased cap thickness makes estimation of dimensions more uncertain.The large increase in contrast provided by the dark field mode of imaging allows the use of shadow replicas with a much lower average mass thickness. To form the images in Fig. 1, latex spheres of 0.087 μ average diameter were unidirectionally shadowed with platinum carbon (Pt-C) and a thin film of carbon was indirectly evaporated on the specimen as a support.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


2021 ◽  
Vol 11 (4) ◽  
pp. 1670
Author(s):  
Tetsuya Mimura ◽  
Shinpei Okawa ◽  
Hiroshi Kawaguchi ◽  
Yukari Tanikawa ◽  
Yoko Hoshi

Thyroid cancer is usually diagnosed by ultrasound imaging and fine-needle aspiration biopsy. However, diagnosis of follicular thyroid carcinomas (FTC) is difficult because FTC lacks nuclear atypia and a consensus on histological interpretation. Diffuse optical tomography (DOT) offers the potential to diagnose FTC because it can measure tumor hypoxia, while image reconstruction of the thyroid is still challenging mainly due to the complex anatomical features of the neck. In this study, we attempted to solve this issue by creating a finite element model of the human neck excluding the trachea (a void region). By reconstruction of the absorption coefficients at three wavelengths, 3D tissue oxygen saturation maps of the human thyroid are obtained for the first time by DOT.


Sign in / Sign up

Export Citation Format

Share Document