scholarly journals A Sensor Fault Detection Scheme as a Functional Safety Feature for DC-DC Converters

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6516
Author(s):  
Simon Schmidt ◽  
Jens Oberrath ◽  
Paolo Mercorelli

DC-DC converters are widely used in a large number of power conversion applications. As in many other systems, they are designed to automatically prevent dangerous failures or control them when they arise; this is called functional safety. Therefore, random hardware failures such as sensor faults have to be detected and handled properly. This proper handling means achieving or maintaining a safe state according to ISO 26262. However, to achieve or maintain a safe state, a fault has to be detected first. Sensor faults within DC-DC converters are generally detected with hardware-redundant sensors, despite all their drawbacks. Within this article, this redundancy is addressed using observer-based techniques utilizing Extended Kalman Filters (EKFs). Moreover, the paper proposes a fault detection and isolation scheme to guarantee functional safety. For this, a cross-EKF structure is implemented to work in cross-parallel to the real sensors and to replace the sensors in case of a fault. This ensures the continuity of the service in case of sensor faults. This idea is based on the concept of the virtual sensor which replaces the sensor in case of fault. Moreover, the concept of the virtual sensor is broader. In fact, if a system is observable, the observer offers a better performance than the sensor. In this context, this paper gives a contribution in this area. The effectiveness of this approach is tested with measurements on a buck converter prototype.

TAPPI Journal ◽  
2014 ◽  
Vol 13 (1) ◽  
pp. 33-41
Author(s):  
YVON THARRAULT ◽  
MOULOUD AMAZOUZ

Recovery boilers play a key role in chemical pulp mills. Early detection of defects, such as water leaks, in a recovery boiler is critical to the prevention of explosions, which can occur when water reaches the molten smelt bed of the boiler. Early detection is difficult to achieve because of the complexity and the multitude of recovery boiler operating parameters. Multiple faults can occur in multiple components of the boiler simultaneously, and an efficient and robust fault isolation method is needed. In this paper, we present a new fault detection and isolation scheme for multiple faults. The proposed approach is based on principal component analysis (PCA), a popular fault detection technique. For fault detection, the Mahalanobis distance with an exponentially weighted moving average filter to reduce the false alarm rate is used. This filter is used to adapt the sensitivity of the fault detection scheme versus false alarm rate. For fault isolation, the reconstruction-based contribution is used. To avoid a combinatorial excess of faulty scenarios related to multiple faults, an iterative approach is used. This new method was validated using real data from a pulp and paper mill in Canada. The results demonstrate that the proposed method can effectively detect sensor faults and water leakage.


2019 ◽  
Vol 124 (1273) ◽  
pp. 385-408
Author(s):  
M. Saied ◽  
B. Lussier ◽  
I. Fantoni ◽  
H. Shraim ◽  
C. Francis

ABSTRACTThis paper considers actuator redundancy management for a redundant multirotor Unmanned Aerial Vehicle (UAV) under actuators failures. Different approaches are proposed: using robust control (passive fault tolerance), and reconfigurable control (active fault tolerance). The robust controller is designed using high-order super-twisting sliding mode techniques, and handles the failures without requiring information from a Fault Detection scheme. The Active Fault-Tolerant Control (AFTC) is achieved through redistributing the control signals among the healthy actuators using reconfigurable multiplexing and pseudo-inverse control allocation. The Fault Detection and Isolation problem is also considered by proposing model-based and model-free modules. The proposed techniques are all implemented on a coaxial octorotor UAV. Different experiments with different scenarios were conducted for the validation of the proposed strategies. Finally, advantages, disadvantages, application considerations and limitations of each method are examined through quantitative and qualitative studies.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Wei Huang ◽  
Xiaoxin Su

This paper deals with the design of a fault detection and isolation (FDI) system for an intelligent vehicle, a vehicle equipped with advanced driver assistance system (ADAS). The ADASs are outfitted with sensors for acquiring various information about the vehicle and its surroundings. Since these sensors are sensitive to faults, an efficient FDI system should be developed. The designed FDI system is comprised of three parts: a detection part, a decision part, and a fault management part. The detection part applies a generalized observer scheme (GOS). In the GOS, there is bank of extended Kalman filters (EKFs), each excited by all except one sensor measurement. The residual generated from the measurement update of each EKF is therefore sensitive to all sensor faults but one. This way, the fault sensitivity pattern of the residual makes it possible to detect a fault and locate the faulty sensor. The designed FDI system has been implemented and tested off-line with actual experiment data. Good results have been obtained with diagnosing individual sensor faults and outputting fault-free vehicle states.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gulay Unal

Purpose The purpose of this study is to present a new integrated structure for a fault tolerant aircraft control system because fault diagnosis of flight control systems is extremely important in obtaining healthy flight. An approach to detect and isolate aircraft sensor faults is proposed, and a new integrated structure for a fault tolerant aircraft control system is presented. Design/methodology/approach As disturbance and sensor faults are mixed together in a flight control system, it is difficult to isolate any fault from the disturbance. This paper proposes a robust unknown input observer for state estimation and fault detection as well as isolation using fuzzy logic. Findings The dedicated observer scheme (DOS) and generalized observer scheme (GOS) are used for fault detection and isolation in an observer-based approach. Using the DOS, it has been shown through simulation that sensor fault detection and isolation can be made, but here the threshold value must be well chosen; if not, the faulty sensor cannot be correctly isolated. On the other hand, the GOS is more usable and flexible than the DOS and allows isolation of faults more correctly and for a fuzzy logic-based controller to be used to realize fault isolation completely. Originality/value The fuzzy logic approach applied to the flight control system adds an important key for sensor fault isolation because it reduces the effect of false alarms and allows the identification of different kinds of sensor faults. The proposed approach can be used for similar systems.


Author(s):  
S. Simani ◽  
P. R. Spina ◽  
S. Beghelli ◽  
R. Bettocchi ◽  
C. Fantuzzi

In order to prevent machine malfunctions and to determine the machine operating state, it is necessary to use correct measurements from actual system inputs and outputs. This requires the use of techniques for the detection and isolation of sensor faults. In this paper an approach based on analytical redundancy which uses dynamic observers is suggested to solve the sensor fault detection and isolation problem for a single-shaft industrial gas turbine. The proposed technique requires the generation of classical residual functions obtained with different observer configurations. The diagnosis is performed by checking fluctuations of these residuals caused by faults.


Author(s):  
Anass Taoufik ◽  
Michael Defoort ◽  
Mohamed Djemai ◽  
Krishna Busawon

AbstractThis paper deals with the problem of distributed fault detection and isolation in multi-agent systems with disturbed high-order dynamics subject to communication uncertainties and faults. Distributed finite-frequency mixed $${\mathcal {H}}_-$$ H - $$/{\mathcal {H}}_\infty $$ / H ∞ unknown input observers are designed to detect and distinguish actuator, sensor and communication faults. Furthermore, an agent is capable of detecting not only its own faults but also faults in its neighbouring agents. Sufficient conditions are then derived in terms of a set of linear matrix inequalities while adding additional design variables to reduce the conservatism. A numerical simulation is carried out in order to demonstrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document