scholarly journals Decentralized Platoon Join-in-Middle Protocol Considering Communication Delay for Connected and Automated Vehicle

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7126
Author(s):  
Geonil Lee ◽  
Jae-il Jung

Cooperative driving is an essential component of intelligent transport systems (ITSs). It promises greater safety, reduced accidents, efficient traffic flow, and fuel consumption reduction. Vehicle platooning is a representative service model for ITS. The principal sub-systems of platooning systems for connected and automated vehicles (CAVs) are cooperative adaptive cruise control (CACC) systems and platoon management systems. Based on vehicle state information received through vehicle-to-vehicle (V2V) communication, the CACC system allows platoon vehicles to maintain a narrower safety distance. In addition, the platoon management system using V2V communications allows vehicles to perform platoon maneuvers reliably and accurately. In this paper, we propose a CACC system with a variable time headway and a decentralized platoon join-in-middle maneuver protocol with a trajectory planning system considering the V2V communication delay for CAVs. The platoon join-in-middle maneuver is a challenging research subject as the research must consider the requirement of a more precise management protocol and lateral control for platoon safety and string stability. These CACC systems and protocols are implemented on a simulator for a connected and automated vehicle system, PreScan, and we validated our approach using a realistic control system and V2V communication system provided by PreScan.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1775 ◽  
Author(s):  
Xiulan Song ◽  
Li Chen ◽  
Ke Wang ◽  
Defeng He

This paper proposes a new, robust time-delay cooperative adaptive cruise control (CACC) approach for vehicle platooning systems with uncertain dynamics and varying communication delay. The uncertain CACC models with perturbed parameters are used to describe the uncertain dynamics of the vehicle platooning system. By combining the constant time headway strategy and predecessor-following communication topology, a set of robust delay feedback controllers is designed for the uncertain vehicle platoon with varying communication delay. Then, the set of CACC controllers is computed by solving some linear matrix inequalities, which further establish the robust (string) stability of the uncertain platooning system with the varying communication delay. The co-simulation experiment of CarSim and Simulink with a group of a seven-car platoons and varying velocity is used to demonstrate the effectiveness of the presented method.


Author(s):  
Rajesh Kumar Gupta ◽  
L. N. Padhy ◽  
Sanjay Kumar Padhi

Traffic congestion on road networks is one of the most significant problems that is faced in almost all urban areas. Driving under traffic congestion compels frequent idling, acceleration, and braking, which increase energy consumption and wear and tear on vehicles. By efficiently maneuvering vehicles, traffic flow can be improved. An Adaptive Cruise Control (ACC) system in a car automatically detects its leading vehicle and adjusts the headway by using both the throttle and the brake. Conventional ACC systems are not suitable in congested traffic conditions due to their response delay.  For this purpose, development of smart technologies that contribute to improved traffic flow, throughput and safety is needed. In today’s traffic, to achieve the safe inter-vehicle distance, improve safety, avoid congestion and the limited human perception of traffic conditions and human reaction characteristics constrains should be analyzed. In addition, erroneous human driving conditions may generate shockwaves in addition which causes traffic flow instabilities. In this paper to achieve inter-vehicle distance and improved throughput, we consider Cooperative Adaptive Cruise Control (CACC) system. CACC is then implemented in Smart Driving System. For better Performance, wireless communication is used to exchange Information of individual vehicle. By introducing vehicle to vehicle (V2V) communication and vehicle to roadside infrastructure (V2R) communications, the vehicle gets information not only from its previous and following vehicle but also from the vehicles in front of the previous Vehicle and following vehicle. This enables a vehicle to follow its predecessor at a closer distance under tighter control.


Author(s):  
Ioannis A. Ntousakis ◽  
Kallirroi Porfyri ◽  
Ioannis K. Nikolos ◽  
Markos Papageorgiou

Vehicle merging on highways has always been an important aspect, which directly affects the capacity of the highway. Under critical traffic conditions, the merging of main road traffic and on-ramp traffic is known to trigger speed breakdown and congestion. Additionally, merging is one of the most stressful tasks for the driver, since it requires a synchronized set of observations and actions. Consequently, drivers often perform merging maneuvers with low efficiency. Emerging vehicle technologies, such as cooperative adaptive cruise control and/or merging-assistance systems, are expected to enable the so-called “cooperative merging”. The purpose of this work is to propose a cooperative merging system and evaluate its performance and its impact on highway capacity. The modeling and simulation of the proposed methodology is performed within the framework of a microscopic traffic simulator. The proposed model allows for the vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication, which enables the effective handling of the available gaps between vehicles. Different cases are examined through simulations, in order to assess the impact of the system on traffic flow, under various traffic conditions. Useful conclusions are derived from the simulation results, which can form the basis for more complex merging algorithms and/or strategies that adapt to traffic conditions.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3499 ◽  
Author(s):  
Hongil An ◽  
Jae-il Jung

Connected and automated vehicles (CAVs) have recently attracted a great deal of attention. Various studies have been conducted to improve vehicle and traffic safety through vehicle to vehicle (V2V) communication. In the field of CAVs, lane change research is considered a very challenging subject. This paper presents a cooperative lane change protocol, considering the impact of V2V communication delay. When creating a path for a lane change in the local path planning module, V2V communication delay occurs. Each vehicle was represented, in our study, by an oriented bounding box (OBB) to determine the risk of collision. We set up a highway driving simulation environment and verified the improved protocol by implementing a longitudinal and lateral controller.


Sign in / Sign up

Export Citation Format

Share Document