scholarly journals Modeling and Parallel Operation of Exchange-Biased Delta-E Effect Magnetometers for Sensor Arrays

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7594
Author(s):  
Benjamin Spetzler ◽  
Patrick Wiegand ◽  
Phillip Durdaut ◽  
Michael Höft ◽  
Andreas Bahr ◽  
...  

Recently, Delta-E effect magnetic field sensors based on exchange-biased magnetic multilayers have shown the potential of detecting low-frequency and small-amplitude magnetic fields. Their design is compatible with microelectromechanical system technology, potentially small, and therefore, suitable for arrays with a large number N of sensor elements. In this study, we explore the prospects and limitations for improving the detection limit by averaging the output of N sensor elements operated in parallel with a single oscillator and a single amplifier to avoid additional electronics and keep the setup compact. Measurements are performed on a two-element array of exchange-biased sensor elements to validate a signal and noise model. With the model, we estimate requirements and tolerances for sensor elements using larger N. It is found that the intrinsic noise of the sensor elements can be considered uncorrelated, and the signal amplitude is improved if the resonance frequencies differ by less than approximately half the bandwidth of the resonators. Under these conditions, the averaging results in a maximum improvement in the detection limit by a factor of N. A maximum N≈200 exists, which depends on the read-out electronics and the sensor intrinsic noise. Overall, the results indicate that significant improvement in the limit of detection is possible, and a model is presented for optimizing the design of delta-E effect sensor arrays in the future.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Xiaohua Huang ◽  
Cheng Zhang ◽  
Keren Dai

Using the piezoelectric effect to harvest energy from surrounding vibrations is a promising alternative solution for powering small electronic devices such as wireless sensors and portable devices. A conventional piezoelectric energy harvester (PEH) can only efficiently collect energy within a small range around the resonance frequency. To realize broadband vibration energy harvesting, the idea of multiple-degrees-of-freedom (DOF) PEH to realize multiple resonant frequencies within a certain range has been recently proposed and some preliminary research has validated its feasibility. Therefore, this paper proposed a multi-DOF wideband PEH based on the frequency interval shortening mechanism to realize five resonance frequencies close enough to each other. The PEH consists of five tip masses, two U-shaped cantilever beams and a straight beam, and tuning of the resonance frequencies is realized by specific parameter design. The electrical characteristics of the PEH are analyzed by simulation and experiment, validating that the PEH can effectively expand the operating bandwidth and collect vibration energy in the low frequency. Experimental results show that the PEH has five low-frequency resonant frequencies, which are 13, 15, 18, 21 and 24 Hz; under the action of 0.5 g acceleration, the maximum output power is 52.2, 49.4, 61.3, 39.2 and 32.1 μW, respectively. In view of the difference between the simulation and the experimental results, this paper conducted an error analysis and revealed that the material parameters and parasitic capacitance are important factors that affect the simulation results. Based on the analysis, the simulation is improved for better agreement with experiments.


2021 ◽  
Vol 6 (1) ◽  
pp. 47
Author(s):  
Julian Schütt ◽  
Rico Illing ◽  
Oleksii Volkov ◽  
Tobias Kosub ◽  
Pablo Nicolás Granell ◽  
...  

The detection, manipulation, and tracking of magnetic nanoparticles is of major importance in the fields of biology, biotechnology, and biomedical applications as labels as well as in drug delivery, (bio-)detection, and tissue engineering. In this regard, the trend goes towards improvements of existing state-of-the-art methodologies in the spirit of timesaving, high-throughput analysis at ultra-low volumes. Here, microfluidics offers vast advantages to address these requirements, as it deals with the control and manipulation of liquids in confined microchannels. This conjunction of microfluidics and magnetism, namely micro-magnetofluidics, is a dynamic research field, which requires novel sensor solutions to boost the detection limit of tiny quantities of magnetized objects. We present a sensing strategy relying on planar Hall effect (PHE) sensors in droplet-based micro-magnetofluidics for the detection of a multiphase liquid flow, i.e., superparamagnetic aqueous droplets in an oil carrier phase. The high resolution of the sensor allows the detection of nanoliter-sized superparamagnetic droplets with a concentration of 0.58 mg cm−3, even when they are only biased in a geomagnetic field. The limit of detection can be boosted another order of magnitude, reaching 0.04 mg cm−³ (1.4 million particles in a single 100 nL droplet) when a magnetic field of 5 mT is applied to bias the droplets. With this performance, our sensing platform outperforms the state-of-the-art solutions in droplet-based micro-magnetofluidics by a factor of 100. This allows us to detect ferrofluid droplets in clinically and biologically relevant concentrations, and even in lower concentrations, without the need of externally applied magnetic fields.


2021 ◽  
Vol 69 (1) ◽  
pp. 1-17
Author(s):  
Frank Simon ◽  
Delphine Sebbane ◽  
surname given-names

Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior. The simplest systems are SDOF-type (single degree of freedom), consisting of a perforated sheet backed with a honeycomb, whose absorption ability is limited to frequencies near the Helmholtz frequency. Thus, to widen the absorption frequency range, manufacturers use a 2DOF (double degree of freedom) system, with an internal layer over another honeycomb (stack of two resonators). However, one constraint is the limited thickness of the overall system, which reduces the space allotted to each honeycomb. A possible approach, based on a previous concept called LEONAR (long elastic open-neck acoustic resonator), could be to link each perforated layer to hollow tubes inserted in each honeycomb layer, in order to shift resonance frequencies to lower frequencies by extending the air column lengths. The presence of an empty chamber on both sides of the internal perforated layer also allows the tube length to be increased through tubes crossing both cavities, preserving the liner thickness. The main aim of this article is to mathematically describe the principle of a 2DOF LEONAR and to show the relevance of the mathematical model through FEM simulations and experiments performed in an impedance tube. Moreover, its behavior is analyzed through a parametric study, in order to explore its potential for an aeronautic application. A remarkable feature of 2DOF LEONAR-type materials with insertion of bottom tubes in the higher cavity is the possibility of maintaining the low frequency band provided by the original LEONAR concept, while adding a second absorption peak at a higher frequency, by the second layer and the accompanying tubes. There is a fundamental difference from classical SDOF/2DOF resonators, for which the thicknesses are obviously different.


1998 ◽  
Vol 42 (6) ◽  
pp. 891-899 ◽  
Author(s):  
Sheng-Lyang Jang ◽  
Heng-Kuen Chen ◽  
Man-Chun Hu

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Jacob Higgins ◽  
Fang Yin Lo ◽  
Michael J. Hipp ◽  
Charles C. Valentine ◽  
Lindsey N. Williams ◽  
...  

Sensitive and specific detection of measurable residual disease (MRD) after treatment in pediatric acute myeloid leukemia (AML) is prognostic of relapse and is important for clinical decision making. Mutation-based methods are increasingly being used, but are hampered by the limited number of common driver gene mutations to target as clone markers. Additional targets would greatly increase MRD detection power. However, even in cases with many AML-defining mutations, it is the limited accuracy of current molecular methods which establishes the lower bounds of sensitivity. Here we describe an ultrasensitive approach for disease monitoring with personalized hybrid capture panels targeting hundreds of somatic mutations identified by whole genome sequencing (WGS), and using extremely accurate Duplex Sequencing (DS) in longitudinal samples. In a pilot cohort of 13 patients we demonstrate detection sensitivities several orders of magnitude beyond currently available single locus testing or less accurate sequencing. With multi-target panels, overall power for MRD detection is cumulative across sites. For example, if a patient has MRD at a true frequency of 1/30,000, sequencing a single mutant site to 10,000x molecular depth would be unlikely to detect MRD. However, sequencing 10 sites each to 10,000x would effectively total 100,000x informative site depth, increasing power to >95%. However, standard sequencing assays are insufficiently accurate to achieve this theoretical limit of detection (LOD). DS enables accurate detection of individual variants to <10-5 with an error rate <10-7 and, thus, can achieve MRD sensitivities below one-in-one-million. Marrow aspirates were collected from 13 uniformly treated pediatric AML patients at time of diagnosis (TOD), during treatment (end of induction, EOI), in remission (end of therapy, EOT), and at relapse. 9/13 patients relapsed. DNA from TOD was analyzed by WGS. Germline variants were excluded and somatic single nucleotide variants (SNVs) were targeted by a custom probe panel designed for each patient. An average of 170 SNVs were targeted per patient (range 53-200). More than 90% of the SNVs were noncoding. Longitudinal samples were then analyzed with DS, which compares sequences from both strands of each DNA molecule to eliminate technical noise and reveal biological mutation signal with extreme accuracy and sensitivity. A median of 82% of WGS SNVs were validated by DS in the TOD DNA, and the vast majority of those were also present at relapse. Relapsers had more SNVs at diagnosis than non-relapsers. EOT samples were sequenced to an average Duplex molecular depth of 29,400x, with a maximum of 61,283x. The figure below shows time course plots tracking SNVs at diagnosis, EOT and relapse for 2 patients. Among mutations validated in TOD samples, a median of only 8 (5%) were detected per EOT sample (range 0-66 mutations). MRD was detected in 8/9 relapsers. Targeting 1 or even 10 SNVs would therefore have missed MRD in the majority of these patients. Among relapsers, median EOT SNV VAF was 0.069%. The lowest single VAF detected per EOT sample ranged from 0.036% to 0.002%. The presence of an SNV at diagnosis and relapse implies that it must truly be present at EOT, whether or not it is detected. Therefore, if a small minority of leukemic mutations are detected at EOT, the true overall MRD frequency is much lower than the LOD at any single site. In the only relapser where MRD was not detected, targeted SNVs were present at diagnosis and relapse, so additional sequencing depth at EOT would eventually reveal ultra-low frequency mutations. Among patients that did not relapse by the end of the study, median VAF at EOI (the latest time point DNA available) was 0.0258%. Therefore, non-relapsers have a lower median VAF at EOI than relapsers do even later at EOT, potentially indicating very early on that treatment is more successful. This study shows excellent performance of DS-based assays for detecting MRD with patient-specific panels. We have demonstrated that among large panels of validated somatic SNVs present at time of diagnosis, a median of 5% are identified at EOT in eventual relapsers. DS detected MRD in 8/9 patients, and at a median VAF well below the limit of detection of any other sequencing technology. Comprehensive personalized hybrid selection panels coupled with DS represents a powerful option for MRD monitoring in pediatric AML and potentially other cancers. Figure Disclosures Higgins: TwinStrand Biosciences: Current Employment. Lo:TwinStrand Biosciences: Current Employment. Hipp:TwinStrand Biosciences: Current Employment. Valentine:TwinStrand Biosciences: Current Employment. Williams:TwinStrand Biosciences: Current Employment. Radich:TwinStrand Biosciences: Research Funding. Salk:TwinStrand Biosciences: Current Employment.


2020 ◽  
Vol 11 (2) ◽  
pp. 155-162
Author(s):  
A. F. Sabitov ◽  
I. A. Safina

The spectral method for establishing dynamic response of measuring instruments basically requires determining the amplitude spectrum of the signal in its informative part that includes the amplitude spectrum at zero frequency. The operating frequency range of existing low-frequency spectrum analyzers is above zero frequency that leads to an uncertainty in dynamic response of measuring instruments determined by the spectral method. The purpose of this paper is to develop a program for calculating the signal amplitude spectrum, starting from zero frequency, to implement a spectral method for determining the dynamic response of measuring instruments on computers equipped with the MatLab package.To implement the spectral method for determining the dynamic response of measuring instruments, we developed a program in the MatLab 2013b environment that determines the signal amplitude spectrum from zero Hertz. The program reads the source data from Excel tables and presents the calculated amplitude spectrum as a chart and a report table.It is shown that the developed program calculates the signal amplitude spectrum with a standard deviation of not more than 3.4 % in the frequency range of 0 to 10 rad/s. The calculated amplitude spectrum allows determining the time constant of first-order aperiodic measuring instruments with an uncertainty of not more than 0.166 % at any noise level, if their frequencies are outside the information part of the spectrum.We demonstrated the claimed advantage of the spectral method for determining dynamic response using the developed program by the example of a high-frequency noise in the transient response of some measuring instruments.


2010 ◽  
Vol 9 (2) ◽  
pp. 254-260
Author(s):  
Choirul Amri ◽  
Dwi Siswanta ◽  
Mudasir Mudasir

A study of extraction-spectrophotometric method for the determination of trace nitrite as 4-(4-nitrobenzenazo)-1-aminonaphthalene complex using n-amylalcohol and chloroform as organic solvents has been done. Results of the study showed that extraction-spectrophotometric determination of nitrite using n-amylalcohol or chloroform was very sensitive and had low limit of detection. Extraction-spectrophotometric method of nitrite using n-amylalcohol gave range of linear concentration 0.000-0.054 mg/L NO2--N, detection limit of 2.09x10-4 mg/L NO2--N, and sensitivity of 34.514 ± 0.398 absorbance unit per mg/L of NO2--N. Meanwhile, extraction-spectrophotometric of nitrite using chloroform had range of linear concentration of 0.000-0.100 mg/L NO2--N, detection limit of 8.99x10-4 mg/L NO2--N, and sensitivity of 18.353 ± 0.456 absorbance unit per mg/L NO2--N.   Keywords: Nitrite Trace, 4-(4-Nitrobenzenazo)-1-Aminonaphthalene, Extraction-Spectrophotometry


The Analyst ◽  
2014 ◽  
Vol 139 (24) ◽  
pp. 6426-6434 ◽  
Author(s):  
Kelley C. Henderson ◽  
Edward S. Sheppard ◽  
Omar E. Rivera-Betancourt ◽  
Joo-Young Choi ◽  
Richard A. Dluhy ◽  
...  

The detection limits by NA-SERS and qPCR for the bacterial pathogenMycoplasma pneumoniaewere compared.


2015 ◽  
Vol 644 ◽  
pp. 236-239 ◽  
Author(s):  
Xin Zhuang ◽  
Marc Lam Chok Sing ◽  
Christophe Dolabdjian ◽  
Y. Wang ◽  
P. Finkel ◽  
...  

The intermediated strain can convert a magnetic field to an electric output signal in a magnetostrictive-piezoelectric layered composite via three parameters: the magnetoelastic coupling, the piezoelastic coupling and the mechanical impedance. These three parameters are dominated respectively by the magnetostrictive coefficient, the piezoelectric coefficient and the mean flexibility of material in the composite. Focusing on these three parameters, many investigations on the ME enhancement have been carried out by choosing the correct material or by adjusting the ratio between the two phases in the composite [4]. Thereafter, the noise performance of ME laminates has been studied for applications as a magnetic sensor. In the last several years, the intrinsic noise sources for both the composite and the amplifier circuit have been mathematically modeled and experimentally characterized. The passively sensed signal can be amplified by either a voltage or a charge method. Furthermore, the noise contributions from the detection electronics were also integrated in the noise performance analysis [5]. According to these studies, dielectric dissipation in the piezoelectric phase is the main contribution to the noise floor for low-frequency magnetic field sensing even though the equivalent current noise source from the electronics induce fluctuations in the output signal of the low-frequency charge detection as well [6].


Author(s):  
Singh N ◽  
◽  
Akhtar MJ ◽  
Anchliya A ◽  
◽  
...  

The objective of this study was the development, optimization, and validation of a RP-HPLC method for the quantification of reduced glutathione (GSH) and oxidized glutathione (GSSG) in pharmaceutical formulations The separation utilized a C18 column at room temperature with absorption wavelength 210nm. The mobile phase was an isocratic flow of a 95:5 (v/v) mixture of 25mM phosphate buffer (pH 2.7) and methanol with flow rate at 1.0 mL/min. Validation of the method assessed with the methods ability in seven categories: linearity, range, limit of detection, limit of quantification, accuracy, precision, and selectivity. The method show an acceptable degree of linearity with r²=0.9994 and 0.999 over a concentration range of 10-200 μg/mL for GSH and GSSG respectively. The detection limit and quantification limit for GSH 20.7μg/mL and 69.24μg/mL and for GSSG 17.22μg/mL and 57.42μg/mL respectively. The percent recovery of the method was 99.98-100.93 %. Following validation, the method was employed in the determination of glutathione in pharmaceutical formulations in the form of a liposome. The proposed method offers a simple, accurate, and inexpensive way to quantify reduced glutathione.


Sign in / Sign up

Export Citation Format

Share Document