scholarly journals Does Gait with an Ankle Foot Orthosis Improve or Compromise Minimum Foot Clearance?

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8089
Author(s):  
Pedro Fonseca ◽  
Leandro Machado ◽  
Manoela Vieira Sousa ◽  
Ricardo Sebastião ◽  
Filipa Sousa ◽  
...  

The purpose of this study was to investigate if the use of an ankle foot orthosis in passive mode (without actuation) could modify minimum foot clearance, and if there are any compensatory mechanisms to enable these changes during treadmill gait at a constant speed. Eight participants walked on an instrumented treadmill without and with an ankle foot orthosis on the dominant limb at speeds of 0.8, 1.2, and 1.6 km/h. For each gait cycle, the minimum foot clearance and some gait linear kinematic parameters were calculated by an inertial motion capture system. Additionally, maximum hip and knee flexion and maximum ankle plantar flexion were calculated. There were no significant differences in the minimum foot clearance between gait conditions and lower limbs. However, differences were found in the swing, stance and step times between gait conditions, as well as between limbs during gait with orthosis (p < 0.05). An increase in hip flexion during gait with orthosis was observed for all speeds, and different ankle ranges of motion were observed according to speed (p < 0.05). Thus, the use of an ankle foot orthosis in passive mode does not significantly hinder minimum foot clearance, but can change gait linear and angular parameters in non-pathological individuals.

Author(s):  
Niketa Patel ◽  
Lavina Rajesh Khatri ◽  
Lata Parmar

Background: In many countries of Asian continent, floor sitting is preferred instead of chair supported sitting. Indian population differs noticeably in its cultural practice and daily tasks which involves squatting and cross-legged sitting on the ground. Aim: The purpose of the study was to assess the functional end-ranges of the hip, knee and ankle joints in healthy Indian subjects in positions commonly used for ADLs in India which includes squatting and cross-legged sitting. Methods: 66 healthy subjects were recruited from rural and urban populations with age range 30-50 years. Joint ROM of the lower extremities was measured using Universal Goniometer. All the subjects were asked to acquire squat and cross legged positions which were graded. Results: Our results finding showed that the subjects in cross leg sitting grade 2 (independent CLS) had hip flexion ranges ≥1150, hip abduction ≥ 410, hip external rotation ≥ 420, ankle plantar flexion ≥ 460, p<0.005.  For squatting, grade 2 (independent squat) had hip flexion ranges ≥ 1130,p>0.005, Knee flexion ≥1200, p>0.005 and ankle dorsiflexion ≥150, p<0.005. Conclusion: From the results, it is suggested that squatting and cross-leg sitting multiple times a day can prevent the early closer of end ranges of the lower limbs.


2002 ◽  
Vol 82 (11) ◽  
pp. 1087-1097 ◽  
Author(s):  
Sarah Blanton ◽  
Samuel P Grissom ◽  
Lisa Riolo

Abstract Background and Purpose. Ankle plantar-flexion contractures are a common complication of brain injuries and can lead to secondary limitations in mobility. Case Description. The patient was a 44-year-old woman with left hemiplegia following a right frontal arteriovenous malformation resection. She had a left ankle plantar-flexion contracture of −31 degrees from neutral. After a tibial nerve block, an adjustable ankle-foot orthosis was applied 23 hours a day for 27 days. Adjustments of the orthosis were made as the contracture was reduced. The patient received physical therapy during the 27-day period for functional mobility activities and stretching the plantar flexors outside of the orthosis. Outcomes. The patient's dorsiflexion passive range of motion increased from −31 degrees to +10 degrees. Discussion. The application of an adjustable ankle-foot orthosis following a tibial nerve block, as an addition to a physical therapy regimen of stretching and mobility training, may reduce plantar-flexion contractures in patients with brain injury.


2010 ◽  
Vol 34 (3) ◽  
pp. 277-292 ◽  
Author(s):  
Sara J. Mulroy ◽  
Valerie J. Eberly ◽  
Joanne K. Gronely ◽  
Walter Weiss ◽  
Craig J. Newsam

This study was conducted to compare the effects of three ankle-foot orthosis (AFO) designs on walking after stroke and determine whether an ankle plantar flexion contracture impacts response to the AFOs. A total of 30 individuals, ranging from 6–215 months post-stroke, were tested in four conditions: shoes only (SH), dorsi-assist/dorsi-stop AFO (DA-DS), plantar stop/free dorsiflexion AFO (PS), and rigid AFO (Rigid). Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Gait parameters were compared between conditions and between participants with and without a moderate ankle plantar flexion contracture. All AFOs increased ankle dorsiflexion in swing and early stance. Anterior tibialis EMG was reduced only in the PS AFO. Both PS and Rigid AFOs restricted ankle plantar flexion and increased knee flexion in loading. Peak ankle dorsiflexion in stance and soleus EMG intensity were greatest in the PS AFO. The Rigid AFO tended to restrict dorsiflexion in stance and knee flexion in swing only in participants without a plantar flexion contracture. Individuals without a contracture benefit from an AFO that permits dorsiflexion mobility in stance and those with quadriceps weakness may more easily tolerate an AFO with plantar flexion mobility in loading.


1996 ◽  
Vol 20 (2) ◽  
pp. 132-137 ◽  
Author(s):  
T. Sumiya ◽  
Y. Suzuki ◽  
T. Kasahara

The hingeless plastic ankle-foot orthosis (AFO) changes stiffness largely depending on how much plastic is trimmed around the ankle. To support proper selection of the orthosis and final adjustment of the orthotic stiffness, the correlation between the posterior upright width and the resistance to dorsi- and plantar flexion movements was measured in 30 posterior-type plastic AFOs. The posterior upright width was varied by regularly trimming around the ankle in nine stages. The resistance to dorsi- and plantar flexion movements was measured by bending the plastic AFOs 15d` with the measuring device described in Part 1. All the plastic AFOs decreased in their resistance to both movements in proportion to the reduction of the posterior upright width. The maximum resistance to plantar flexion movement was about 28 Nm, which was strong enough to assist dorsiflexion in patients with severe spasticity. On the other hand, the maximum resistance to dorsiflexion movement measured was about 10 Nm, which was insufficient to stabilise the ankle in patients who lacked in plantar flexion strength. These findings suggested that this type of plastic AFO should be prescribed for patients who predominantly require dorsiflexion assist, and that the orthotic stiffness could be finally adjusted by trimming to exactly meet individual requirements.


2007 ◽  
Vol 31 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Stefania Fatone ◽  
Andrew H. Hansen

Accurate alignment of anatomical and mechanical joint axes is one of the major biomechanical principles pertaining to articulated orthoses, yet knowledge of the potential effects of axis misalignment is limited. The purpose of this project was to model the effects of systematic linear (proximal-distal and anterior-posterior) misalignments of single axis mechanical ankle joints in an ankle-foot orthosis (AFO) in order to determine the degree and direction of calf band travel that would occur over a functional range of motion. Sagittal plane misalignments of the ankle joint centres of an AFO were simulated using a simple two-dimensional model for both a range of ankle angles and a typical able-bodied ankle kinematic curve for self-selected normal walking speed. The model assumed that no movement occurred between the foot and the foot-plate of the AFO. The model predicted that for anterior (positive horizontal) misalignments, dorsiflexion movements would cause the calf band to travel proximally (i.e., up the leg) and plantar flexion movements would cause the calf band to travel distally (i.e., down the leg). The opposite was predicted for posterior (negative horizontal) misalignments. Proximal (positive vertical) misalignments would cause only distal movements of the calf band while distal (negative vertical) misalignments would cause only proximal movements of the calf band. Anterior-posterior misalignments were found to have a much larger effect on the amount of calf band travel than proximal-distal misalignments.


2012 ◽  
Vol 37 (3) ◽  
pp. 212-221 ◽  
Author(s):  
Sumiko Yamamoto ◽  
Naoki Tomokiyo ◽  
Tadashi Yasui ◽  
Toshikazu Kawaguchi

Background: An ankle-foot orthosis with an oil damper was previously developed to assist the first rocker function during gait, but the effects of the amount of resistive moment generated on gait have not been clarified. Objectives: To measure the amount of resistive moment generated by the ankle-foot orthosis with an oil damper during gait and determine its effect on the gait of patients with stroke. Study Design: Preliminary cross-sectional study. Methods: The gait of four patients with stroke in the chronic phase was measured in four conditions: without an ankle-foot orthosis and with the ankle-foot orthosis with an oil damper generating three different amounts of resistive moment. Measurements were taken with a three-dimensional motion analysis system and a specially designed device to determine the resistive moment. Results: The resistive moment was observed in the former half in stance of the paretic limb, and its magnitude was less than 10 N m. Some gait parameters related to terminal stance and preswing were affected by the amount of resistive moment. The forward component of floor reaction force and the shank vertical angle showed peak values when the patients reported feeling most comfortable during gait. Conclusion: Although the resistive moment generated by the ankle-foot orthosis with an oil damper was small, it was sufficient to alter gait. Clinical relevance To maximize the effectiveness of ankle-foot orthoses, it is necessary to know the effects of resistive moment on the gait of patients with stroke. The ankle-foot orthosis with an oil damper assists the first rocker function in gait and also affects the gait in a later phase in stance. The peak values of some gait parameters coincided with patients reporting gait to be most comfortable. It is important to know that ankle-foot orthosis with an oil damper assistance in the first rocker alters the weight acceptance on the paretic limb and affects the gait parameters related to propulsion ability in stance.


2017 ◽  
Vol 34 (4) ◽  
pp. 293-300
Author(s):  
Dragoljub Živanović ◽  
Andjelka Slavković ◽  
Zoran Marjanović ◽  
Ivona Djordjević ◽  
Nikola Bojović ◽  
...  

Summary Congenital posteromedial bowing of the tibia (CPMBT) is a rare congenital anomaly of the lower limbs. The aim of the present study was to analyze our experience in the treatment of CPMBT. A retrospective study of patients treated for CPMBT in the period January 2000 – June 2016 was performed. In the observed period, six patients were treated (five girls and one boy), with predominance of the right tibia involvement (5:1). The initial treatment included a series of corrective casts (4-9) applied in all patients, followed by removable splints and physiotherapy. Four children with residual angulation of tibia after walking age were prescribed ankle-foot orthosis (AFO) as a prevention of pathological fractures. Both posterior and medial angulation correct over time. Mean initial shortening was 11 mm. At the last follow-up visit, mean shortening was 23.33mm. Three patients had lower limb shortening of more than 2 cm. In two of them, with shortening of 27 mm and 35 mm, Ilizarov lengthening was performed. In one girl, we performed lengthening over titanium elastic nails. In the other girl, after lengthening, circular frame was exchanged with a locking plate to reduce fixator wearing time. There were no major complications of treatment. Patients were followed up for 2-12 years (mean 6.83 years). None of them reached skeletal maturity yet. Primary manifestation of CPMBT – angulation of tibia and fibula as well as calcaneovalgus deformity usually correct spontaneously or with conservative measures. However, limb length inequality, as a consequence of CPMBT, progresses with growth and may require surgical correction in some children. Therefore, all children with CPMBT should be followed up until skeletal maturity.


This paper describes the development of Physical Modelling of Series Elastic Actuator for Active Ankle-Foot Orthosis by using Simscape Multibody Link. Active Ankle-Foot Orthosis is essential that can be used for the rehabilitation process to the patient. It is useful in medicine to help a patient who loses their walking ability, due to ankle weakness, to regain the walking ability. This project focuses on the design, simulate and physical modelling for Ankle-Foot Orthosis. This project was used Solidworks as a platform to design the Active Ankle-Foot Orthosis and using MatLab/Simulink for simulation by using Simscape Multibody Link tools. The Active Ankle-Foot Orthosis moves in 2 basic movement of ankle that is dorsiflexion and plantar flexion for rehabilitation. So, this project focuses on the physical modelling for the Series Elastic Actuator that drives the ankle movement mimicking the normal gait cycle.


2021 ◽  
Author(s):  
Sumiko Yamamoto ◽  
Naoyuki Motojima ◽  
Yosuke Kobayashi ◽  
Yuji Osada ◽  
Souji Tanaka ◽  
...  

Abstract BackgroundGait improvement in patients with stroke using ankle-foot orthosis (AFO) has been compared to the effects of non-AFO use in previous studies, but the effect of different kinds of AFOs has not been clear. When considering the effect of different kinds of AFOs on gait, the dorsiflexion and plantar flexion moment of resistance is considered a key determinant of functional effect. In this study, the effect on gait of using an AFO with an oil damper (AFO-OD), which has plantar flexion resistance but no dorsiflexion resistance, and a nonarticulated AFO, which has both dorsiflexion and plantar flexion resistance, were compared in a randomized controlled trial. MethodsForty-one patients (31 men, 10 women; mean age 58.4 ± 11.3 years) in the subacute phase of stroke were randomly allocated to two groups to undergo 2 weeks of gait training by physiotherapists while wearing an AFO-OD or a nonarticulated AFO. A motion capture system was utilized to measure shod gait without orthosis at baseline and after training with the allocated AFO. Data analysis was performed focused on the spatial and temporal parameters, ground reaction force, shank-to-vertical angle, and ankle joint kinematics and kinetics. Two-way mixed ANOVA was performed to clarify the effect of AFO use and the difference between the two AFOs. ResultsThirty-six patients completed the study (17 in the AFO-OD group and 19 in the nonarticulated AFO group). Spatial and temporal parameters and ankle joint kinematics were improved after 2 weeks in both AFO groups. Interactions were found for the range of shank-to-vertical angles in paretic single stance and ankle peak power absorption. In the AFO-OD group, both parameters improved when the participants walked with the AFO compared to the shod gait, but there was no change in the nonarticulated AFO group. Power generation was not increased in either AFO group. ConclusionsThe results of this study showed that AFO with plantar flexion resistance but without dorsiflexion resistance improved the range of the shank-to-vertical angle and ankle power absorption but not power generation in a paretic stance. (336/350 words)Trial registration: UMIN000028126 Registered 1 August 2017,https://upload.umin.ac.jp/cgi-bin/icdr/ctr_menu_form_reg.cgi?recptno=R000032197


Sign in / Sign up

Export Citation Format

Share Document