scholarly journals Neural Fourier Energy Disaggregation

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 473
Author(s):  
Christoforos Nalmpantis ◽  
Nikolaos Virtsionis Gkalinikis ◽  
Dimitris Vrakas

Deploying energy disaggregation models in the real-world is a challenging task. These models are usually deep neural networks and can be costly when running on a server or prohibitive when the target device has limited resources. Deep learning models are usually computationally expensive and they have large storage requirements. Reducing the computational cost and the size of a neural network, without trading off any performance is not a trivial task. This paper suggests a novel neural architecture that has less learning parameters, smaller size and fast inference time without trading off performance. The proposed architecture performs on par with two popular strong baseline models. The key characteristic is the Fourier transformation which has no learning parameters and it can be computed efficiently.

2021 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Yongsen Ma ◽  
Sheheryar Arshad ◽  
Swetha Muniraju ◽  
Eric Torkildson ◽  
Enrico Rantala ◽  
...  

In recent years, Channel State Information (CSI) measured by WiFi is widely used for human activity recognition. In this article, we propose a deep learning design for location- and person-independent activity recognition with WiFi. The proposed design consists of three Deep Neural Networks (DNNs): a 2D Convolutional Neural Network (CNN) as the recognition algorithm, a 1D CNN as the state machine, and a reinforcement learning agent for neural architecture search. The recognition algorithm learns location- and person-independent features from different perspectives of CSI data. The state machine learns temporal dependency information from history classification results. The reinforcement learning agent optimizes the neural architecture of the recognition algorithm using a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). The proposed design is evaluated in a lab environment with different WiFi device locations, antenna orientations, sitting/standing/walking locations/orientations, and multiple persons. The proposed design has 97% average accuracy when testing devices and persons are not seen during training. The proposed design is also evaluated by two public datasets with accuracy of 80% and 83%. The proposed design needs very little human efforts for ground truth labeling, feature engineering, signal processing, and tuning of learning parameters and hyperparameters.


Author(s):  
Chen Qi ◽  
Shibo Shen ◽  
Rongpeng Li ◽  
Zhifeng Zhao ◽  
Qing Liu ◽  
...  

AbstractNowadays, deep neural networks (DNNs) have been rapidly deployed to realize a number of functionalities like sensing, imaging, classification, recognition, etc. However, the computational-intensive requirement of DNNs makes it difficult to be applicable for resource-limited Internet of Things (IoT) devices. In this paper, we propose a novel pruning-based paradigm that aims to reduce the computational cost of DNNs, by uncovering a more compact structure and learning the effective weights therein, on the basis of not compromising the expressive capability of DNNs. In particular, our algorithm can achieve efficient end-to-end training that transfers a redundant neural network to a compact one with a specifically targeted compression rate directly. We comprehensively evaluate our approach on various representative benchmark datasets and compared with typical advanced convolutional neural network (CNN) architectures. The experimental results verify the superior performance and robust effectiveness of our scheme. For example, when pruning VGG on CIFAR-10, our proposed scheme is able to significantly reduce its FLOPs (floating-point operations) and number of parameters with a proportion of 76.2% and 94.1%, respectively, while still maintaining a satisfactory accuracy. To sum up, our scheme could facilitate the integration of DNNs into the common machine-learning-based IoT framework and establish distributed training of neural networks in both cloud and edge.


Author(s):  
Qin Song ◽  
Yu-Jun Zheng ◽  
Jun Yang

Morbidity prediction can be useful in improving the effectiveness and efficiency of medical services, but accurate morbidity prediction is often difficult because of the complex relationships between diseases and their influencing factors. This study investigates the effects of food contamination on gastrointestinal-disease morbidities using eight different machine-learning models, including multiple linear regression, a shallow neural network, and three deep neural networks and their improved versions trained by an evolutionary algorithm. Experiments on the datasets from ten cities/counties in central China demonstrate that deep neural networks achieve significantly higher accuracy than classical linear-regression and shallow neural-network models, and the deep denoising autoencoder model with evolutionary learning exhibits the best prediction performance. The results also indicate that the prediction accuracies on acute gastrointestinal diseases are generally higher than those on other diseases, but the models are difficult to predict the morbidities of gastrointestinal tumors. This study demonstrates that evolutionary deep-learning models can be utilized to accurately predict the morbidities of most gastrointestinal diseases from food contamination, and this approach can be extended for the morbidity prediction of many other diseases.


2020 ◽  
Author(s):  
Albahli Saleh ◽  
Ali Alkhalifah

BACKGROUND To diagnose cardiothoracic diseases, a chest x-ray (CXR) is examined by a radiologist. As more people get affected, doctors are becoming scarce especially in developing countries. However, with the advent of image processing tools, the task of diagnosing these cardiothoracic diseases has seen great progress. A lot of researchers have put in work to see how the problems associated with medical images can be mitigated by using neural networks. OBJECTIVE Previous works used state-of-the-art techniques and got effective results with one or two cardiothoracic diseases but could lead to misclassification. In our work, we adopted GANs to synthesize the chest radiograph (CXR) to augment the training set on multiple cardiothoracic diseases to efficiently diagnose the chest diseases in different classes as shown in Figure 1. In this regard, our major contributions are classifying various cardiothoracic diseases to detect a specific chest disease based on CXR, use the advantage of GANs to overcome the shortages of small training datasets, address the problem of imbalanced data; and implementing optimal deep neural network architecture with different hyper-parameters to improve the model with the best accuracy. METHODS For this research, we are not building a model from scratch due to computational restraints as they require very high-end computers. Rather, we use a Convolutional Neural Network (CNN) as a class of deep neural networks to propose a generative adversarial network (GAN) -based model to generate synthetic data for training the data as the amount of the data is limited. We will use pre-trained models which are models that were trained on a large benchmark dataset to solve a problem similar to the one we want to solve. For example, the ResNet-152 model we used was initially trained on the ImageNet dataset. RESULTS After successful training and validation of the models we developed, ResNet-152 with image augmentation proved to be the best model for the automatic detection of cardiothoracic disease. However, one of the main problems associated with radiographic deep learning projects and research is the scarcity and unavailability of enough datasets which is a key component of all deep learning models as they require a lot of data for training. This is the reason why some of our models had image augmentation to increase the number of images without duplication. As more data are collected in the field of chest radiology, the models could be retrained to improve the accuracies of the models as deep learning models improve with more data. CONCLUSIONS This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using deep learning models, the research aims to evaluate the effectiveness and accuracy of different convolutional neural network models in the automatic diagnosis of cardiothoracic diseases from x-ray images compared to diagnosis by experts in the medical community.


2021 ◽  
Vol 118 (43) ◽  
pp. e2103091118
Author(s):  
Cong Fang ◽  
Hangfeng He ◽  
Qi Long ◽  
Weijie J. Su

In this paper, we introduce the Layer-Peeled Model, a nonconvex, yet analytically tractable, optimization program, in a quest to better understand deep neural networks that are trained for a sufficiently long time. As the name suggests, this model is derived by isolating the topmost layer from the remainder of the neural network, followed by imposing certain constraints separately on the two parts of the network. We demonstrate that the Layer-Peeled Model, albeit simple, inherits many characteristics of well-trained neural networks, thereby offering an effective tool for explaining and predicting common empirical patterns of deep-learning training. First, when working on class-balanced datasets, we prove that any solution to this model forms a simplex equiangular tight frame, which, in part, explains the recently discovered phenomenon of neural collapse [V. Papyan, X. Y. Han, D. L. Donoho, Proc. Natl. Acad. Sci. U.S.A. 117, 24652–24663 (2020)]. More importantly, when moving to the imbalanced case, our analysis of the Layer-Peeled Model reveals a hitherto-unknown phenomenon that we term Minority Collapse, which fundamentally limits the performance of deep-learning models on the minority classes. In addition, we use the Layer-Peeled Model to gain insights into how to mitigate Minority Collapse. Interestingly, this phenomenon is first predicted by the Layer-Peeled Model before being confirmed by our computational experiments.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Xin Long ◽  
XiangRong Zeng ◽  
Zongcheng Ben ◽  
Dianle Zhou ◽  
Maojun Zhang

The increase in sophistication of neural network models in recent years has exponentially expanded memory consumption and computational cost, thereby hindering their applications on ASIC, FPGA, and other mobile devices. Therefore, compressing and accelerating the neural networks are necessary. In this study, we introduce a novel strategy to train low-bit networks with weights and activations quantized by several bits and address two corresponding fundamental issues. One is to approximate activations through low-bit discretization for decreasing network computational cost and dot-product memory. The other is to specify weight quantization and update mechanism for discrete weights to avoid gradient mismatch. With quantized low-bit weights and activations, the costly full-precision operation will be replaced by shift operation. We evaluate the proposed method on common datasets, and results show that this method can dramatically compress the neural network with slight accuracy loss.


2020 ◽  
Vol 34 (04) ◽  
pp. 5037-5044
Author(s):  
Zhaoyang Lyu ◽  
Ching-Yun Ko ◽  
Zhifeng Kong ◽  
Ngai Wong ◽  
Dahua Lin ◽  
...  

The rapid growth of deep learning applications in real life is accompanied by severe safety concerns. To mitigate this uneasy phenomenon, much research has been done providing reliable evaluations of the fragility level in different deep neural networks. Apart from devising adversarial attacks, quantifiers that certify safeguarded regions have also been designed in the past five years. The summarizing work in (Salman et al. 2019) unifies a family of existing verifiers under a convex relaxation framework. We draw inspiration from such work and further demonstrate the optimality of deterministic CROWN (Zhang et al. 2018) solutions in a given linear programming problem under mild constraints. Given this theoretical result, the computationally expensive linear programming based method is shown to be unnecessary. We then propose an optimization-based approach FROWN (Fastened CROWN): a general algorithm to tighten robustness certificates for neural networks. Extensive experiments on various networks trained individually verify the effectiveness of FROWN in safeguarding larger robust regions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Florian Stelzer ◽  
André Röhm ◽  
Raul Vicente ◽  
Ingo Fischer ◽  
Serhiy Yanchuk

AbstractDeep neural networks are among the most widely applied machine learning tools showing outstanding performance in a broad range of tasks. We present a method for folding a deep neural network of arbitrary size into a single neuron with multiple time-delayed feedback loops. This single-neuron deep neural network comprises only a single nonlinearity and appropriately adjusted modulations of the feedback signals. The network states emerge in time as a temporal unfolding of the neuron’s dynamics. By adjusting the feedback-modulation within the loops, we adapt the network’s connection weights. These connection weights are determined via a back-propagation algorithm, where both the delay-induced and local network connections must be taken into account. Our approach can fully represent standard Deep Neural Networks (DNN), encompasses sparse DNNs, and extends the DNN concept toward dynamical systems implementations. The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits promising performance in a set of benchmark tasks.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1511
Author(s):  
Taylor Simons ◽  
Dah-Jye Lee

There has been a recent surge in publications related to binarized neural networks (BNNs), which use binary values to represent both the weights and activations in deep neural networks (DNNs). Due to the bitwise nature of BNNs, there have been many efforts to implement BNNs on ASICs and FPGAs. While BNNs are excellent candidates for these kinds of resource-limited systems, most implementations still require very large FPGAs or CPU-FPGA co-processing systems. Our work focuses on reducing the computational cost of BNNs even further, making them more efficient to implement on FPGAs. We target embedded visual inspection tasks, like quality inspection sorting on manufactured parts and agricultural produce sorting. We propose a new binarized convolutional layer, called the neural jet features layer, that learns well-known classic computer vision kernels that are efficient to calculate as a group. We show that on visual inspection tasks, neural jet features perform comparably to standard BNN convolutional layers while using less computational resources. We also show that neural jet features tend to be more stable than BNN convolution layers when training small models.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A164-A164
Author(s):  
Pahnwat Taweesedt ◽  
JungYoon Kim ◽  
Jaehyun Park ◽  
Jangwoon Park ◽  
Munish Sharma ◽  
...  

Abstract Introduction Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Methods Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest Neighbors classifier (KNC) and Support Vector Machine Classifier (SVMC). Training:Testing subject ratio of 65:35 was used. All features including demographic data, body measurement, snoring and sleepiness history were obtained from 5 OSA screening questionnaires/scores (STOP-BANG questionnaires, Berlin questionnaires, NoSAS score, NAMES score and No-Apnea score). Performance parametrics were used to compare between machine learning models. Results Of 180 subjects, 51.5 % of subjects were male with mean (SD) age of 53.6 (15.1). One hundred and nineteen subjects were diagnosed with OSA. Area Under the Receiver Operating Characteristic Curve (AUROC) of DNN-PCA, RF, ABC, KNC, SVMC, STOP-BANG questionnaire, Berlin questionnaire, NoSAS score, NAMES score, and No-Apnea score were 0.85, 0.68, 0.52, 0.74, 0.75, 0.61, 0.63, 0,61, 0.58 and 0,58 respectively. DNN-PCA showed the highest AUROC with sensitivity of 0.79, specificity of 0.67, positive-predictivity of 0.93, F1 score of 0.86, and accuracy of 0.77. Conclusion Our result showed that DNN-PCA outperforms OSA screening questionnaires, scores and other machine learning models. Support (if any):


Sign in / Sign up

Export Citation Format

Share Document