MEMe: A Mutually Enhanced Modeling Method for Efficient and Effective Human Pose Estimation
In this paper, a mutually enhanced modeling method (MEMe) is presented for human pose estimation, which focuses on enhancing lightweight model performance, but with low complexity. To obtain higher accuracy, a traditional model scale is largely expanded with heavy deployment difficulties. However, for a more lightweight model, there is a large performance gap compared to the former; thus, an urgent need for a way to fill it. Therefore, we propose a MEMe to reconstruct a lightweight baseline model, EffBase transferred intuitively from EfficientDet, into the efficient and effective pose (EEffPose) net, which contains three mutually enhanced modules: the Enhanced EffNet (EEffNet) backbone, the total fusion neck (TFNeck), and the final attention head (FAHead). Extensive experiments on COCO and MPII benchmarks show that our MEMe-based models reach state-of-the-art performances, with limited parameters. Specifically, in the same conditions, our EEffPose-P0 with 256 × 192 can use only 8.98 M parameters to achieve 75.4 AP on the COCO val set, which outperforms HRNet-W48, but with only 14% of its parameters.