scholarly journals Potential of Octanol and Octanal from Heracleum sosnowskyi Fruits for the Control of Fusarium oxysporum f. sp. lycopersici

2020 ◽  
Vol 12 (22) ◽  
pp. 9334
Author(s):  
May Khaing Hpoo ◽  
Maryia Mishyna ◽  
Valery Prokhorov ◽  
Tsutomu Arie ◽  
Akihito Takano ◽  
...  

The antifungal activity of volatile compounds from the fruit, leaf, rhizome and root of 109 plant species was evaluated against Fusarium oxysporum f. sp. lycopersici (FOL) race 1—the tomato wilt pathogen—by using the modified dish pack method. Eighty-eight plant samples inhibited mycelial growth, including volatiles from fruits of Heracleum sosnowskyi, which exhibited the strongest antifungal activity, showing 67% inhibition. Two volatile compounds from the fruits of H. sosnowskyi (octanol and octanal) and trans-2-hexenal as a control were tested for their antifungal activities against FOL race 1 and race 2. In terms of half-maximal effective concentration (EC50) values, octanol was found to be the most inhibitory compound for both pathogenic races, with the smallest EC50 values of 8.1 and 9.3 ng/mL for race 1 and race 2, respectively. In the biofumigation experiment, the lowest disease severity of tomato plants and smallest conidial population of race 1 and race 2 were found in trans-2-hexenal and octanol treated soil, while octanal had an inhibitory effect only on race 2. Therefore, our study demonstrated the effectiveness of volatile octanol and trans-2-hexenal on the control of the mycelial growth of two races of Fusarium oxysporum f. sp. lycopersici and may have potential for the future development of novel biofumigants.

2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Domenico Rongai ◽  
Patrizio Pulcini ◽  
Barbara Pesce ◽  
Filomena Milano

AbstractThe present paper describes the antifungal activity of some plant extracts on the development of Fusarium oxysporum f.sp. lycopersici. The best extracts were selected to be tested as a phytofungicide to control crop diseases, with the ultimate goal of developing a green alternative to synthetic fungicides. Using the conidia germination assay, of the 24 plant extracts tested, 15 reduced conidia germination and 6 completely inhibited germination. Extracts of Rivina humulis, Brassica carinata, Brunfelsia calyicina, Salvia guaranitica and Punica granatum showed good antifungal activity. The relationship between total phenolic content (TPC) in each plant extract tested and the percentage of mycelial growth inhibition showed a significant correlation (R2 = 0.69), while no correlation was found between total flavonoid content (TFC) and percentage mycelial growth inhibition. Among all extracts tested, Punica granatum and Salvia guaranitica showed the best inhibitory effect against Fusarium oxysporum f.sp. lycopersici . Our results indicate that plant extracts with a good antifungal activity generally had a high level of total polyphenolic content and titratable acidity, and low values of pH.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
V. Chellappan Biju ◽  
Like Fokkens ◽  
Petra M. Houterman ◽  
Martijn Rep ◽  
Ben J. C. Cornelissen

ABSTRACT Race 1 isolates of Fusarium oxysporum f. sp. lycopersici (FOL) are characterized by the presence of AVR1 in their genomes. The product of this gene, Avr1, triggers resistance in tomato cultivars carrying resistance gene I. In FOL race 2 and race 3 isolates, AVR1 is absent, and hence they are virulent on tomato cultivars carrying I. In this study, we analyzed an approximately 100-kb genomic fragment containing the AVR1 locus of FOL race 1 isolate 004 (FOL004) and compared it to the sequenced genome of FOL race 2 isolate 4287 (FOL4287). A genomic fragment of 31 kb containing AVR1 was found to be missing in FOL4287. Further analysis suggests that race 2 evolved from race 1 by deletion of this 31-kb fragment due to a recombination event between two transposable elements bordering the fragment. A worldwide collection of 71 FOL isolates representing races 1, 2, and 3, all known vegetative compatibility groups (VCGs), and five continents was subjected to PCR analysis of the AVR1 locus, including the two bordering transposable elements. Based on phylogenetic analysis using the EF1-α gene, five evolutionary lineages for FOL that correlate well with VCGs were identified. More importantly, we show that FOL races evolved in a stepwise manner within each VCG by the loss of function of avirulence genes in a number of alternative ways. IMPORTANCE Plant-pathogenic microorganisms frequently mutate to overcome disease resistance genes that have been introduced in crops. For the fungus Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt in tomato, we have identified the nature of the mutations that have led to the overcoming of the I and I-2 resistance genes in all five known clonal lineages, which include a newly discovered lineage. Five different deletion events, at least several of which are caused by recombination between transposable elements, have led to loss of AVR1 and overcoming of I. Two new events affecting AVR2 that led to overcoming of I-2 have been identified. We propose a reconstruction of the evolution of races in FOL, in which the same mutations in AVR2 and AVR3 have occurred in different lineages and the FOL pathogenicity chromosome has been transferred to new lineages several times.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1326-1332 ◽  
Author(s):  
Anthony P. Keinath ◽  
Richard L. Hassell

Fusarium wilt of watermelon, caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. niveum race 2, is a serious, widespread disease present in major watermelon-growing regions of the United States and other countries. ‘Fascination,’ a high yielding triploid resistant to race 1, is grown in southeastern states in fields that contain a mixture of races 1 and 2. There is some benefit to using cultivars with race 1 resistance in such fields, even though Fascination is susceptible to Fusarium wilt caused by race 2. Experiments in 2012 and 2013 were done in fields infested primarily with race 2 and a mixture of races 1 and 2, respectively. Fascination was grafted onto four rootstock cultivars: bottle gourd (Lagenaria siceraria) ‘Macis’ and ‘Emphasis’ and interspecific hybrid squash (Cucurbita maxima× C. moschata) ‘Strong Tosa’ and ‘Carnivor.’ Nongrafted and self-grafted Fascination were used as susceptible control treatments. In both experiments, mean incidence of plants with symptoms of Fusarium wilt was ≥52% in the susceptible control treatments and ≤6% on the grafted rootstocks. Disease incidence did not differ between rootstock species or cultivars. In both years, Fascination grafted onto Strong Tosa and Macis produced more marketable-sized fruit than the susceptible control treatments. Grafted Emphasis and Carnivor also produced more fruit than the control treatments in 2012. The cucurbit rootstocks suppressed Fusarium wilt caused by race 2 and increased marketable yield of triploid watermelon grown in infested soil.


1991 ◽  
Vol 39 (2) ◽  
pp. 161 ◽  
Author(s):  
NY Moore ◽  
PA Hargreaves ◽  
KG Pegg ◽  
JAG Irwin

The production of volatiles on steamed rice by Australian isolates of Fusarium oxysporum f. sp. cubense correlated well with race and vegetative compatibility group (VCG). All race 4 isolates (VCGs 0120, 0129) produced distinctive volatile odours which gave characteristic gas chromatograms where the num- ber of peaks equated to VCG. Race 1 (VCGs 0124, 0125) and race 2 (VCG 0128) isolates, as well as non-pathogenic isolates of F. oxysporum from the banana rhizosphere, did not produce detectable volatiles and gave chromatograms without significant peaks.


2007 ◽  
Vol 97 (4) ◽  
pp. 461-469 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts

Eighty-eight isolates of Fusarium oxysporum f. sp. niveum, collected from wilted watermelon plants and infested soil in Maryland and Dela-ware, were characterized by cross pathogenicity to muskmelon, race, and vegetative compatibility. Four isolates (4.5%) were moderately pathogenic to ≥2 of 18 muskmelon cultivars in a greenhouse test, and one representative isolate also was slightly pathogenic in field microplots. The four isolates all were designated as race 2, and were in vegetative compatibility group (VCG) 0082. Of the 74 isolates to which a VCG could be assigned, 41 were in VCG 0080, the VCG distributed most widely; 27 were in VCG 0082, and were distributed in half of the 20 watermelon fields surveyed; and 6 were in the newly described VCG 0083, and were restricted to three fields. Among the isolates in VCG 0080, 8 were designated as race 0, 21 as race 1, and 12 as race 2. Of the isolates in VCG 0082, 6 were designated as race 0, 11 as race 1, and 10 as race 2. All isolates in VCG 0083 were designated as race 2. Isolates from more than one race within the same VCG or isolates from more than one VCG were recovered from single plants and fields. No differences in aggressiveness on differential watermelon cultivars were observed among isolates from different VCGs of the same race. A diverse association between virulence and VCG throughout the Mid-Atlantic region suggests that the pathotypes of F. oxysporum f. sp. niveum may be of local origin or at least long existent in the region.


1999 ◽  
Vol 89 (2) ◽  
pp. 156-160 ◽  
Author(s):  
Jurriaan J. Mes ◽  
Emma A. Weststeijn ◽  
Frits Herlaar ◽  
Joep J. M. Lambalk ◽  
Jelle Wijbrandi ◽  
...  

A collection of race 1 and race 2 isolates of Fusarium oxysporum f. sp. lycopersici was screened for vegetative compatibility and characterized by random amplified polymorphic DNA (RAPD) analysis to establish the identity and genetic diversity of the isolates. Comparison of RAPD profiles revealed two main groups that coincide with vegetative compatibility groups (VCGs). In addition, several single-member VCGs were identified that could not be grouped in one of the two main RAPD clusters. This suggests that F. oxysporum f. sp. lycopersici is a polyphyletic taxon. To assign avirulence genotypes to race 1 isolates, they were tested for their virulence on a small set of tomato lines (Lycopersicon esculentum), including line OT364. This line was selected because it shows resistance to race 2 isolates but, unlike most other race 2-resistant lines, susceptibility to race 1 isolates. To exclude the influence of other components than those related to the race-specific resistance response, we tested the virulence of race 1 isolates on a susceptible tomato that has become race 2 resistant by introduction of an I-2 transgene. The results show that both line OT364 and the transgenic line were significantly affected by four race 1 isolates, but not by seven other race 1 isolates nor by any race 2 isolates. This allowed a subdivision of race 1 isolates based on the presence or absence of an avirulence gene corresponding to the I-2 resistance gene. The data presented here support a gene-for-gene relationship for the interaction between F. oxysporum f. sp. lycopersici and its host tomato.


Plant Disease ◽  
1997 ◽  
Vol 81 (6) ◽  
pp. 592-596 ◽  
Author(s):  
T. L. Zuniga ◽  
T. A. Zitter ◽  
T. R. Gordon ◽  
D. T. Schroeder ◽  
D. Okamoto

Forty-six isolates of Fusarium oxysporum f. sp. melonis obtained from soil samples throughout melon-producing areas in New York State were identified on the basis of pathogenicity and colony morphology. Physiological races 1 and 2 were identified by their reaction on a set of differential melon cultivars. Race 1 was widely distributed, occurring in six of the seven New York counties surveyed. Twenty-seven of the 28 race 1 isolates were associated with vegetative compatibility group (VCG) 0134, whereas one was incompatible with all known VCGs of F. oxysporum f. sp. melonis. Twelve out of 18 race 2 isolates were associated with VCG 0131, and occurred in four counties in eastern and western New York. Five isolates of race 2, associated with VCG 0130, were recovered from a farm in Washington County, as was a single race 2 isolate which was incompatible with all known VCGs of F. oxysporum f. sp. melonis. Restriction fragment length polymorphisms in the nuclear DNA revealed variability among the isolates examined, but race 1/VCG 0134 isolates from New York and Maryland were identical or nearly so, as were race 2/VCG 0131 isolates from the two states. These findings suggest a close relationship between the populations of F. oxysporum f. sp. melonis in New York and Maryland. Race 2 isolates were more virulent than race 1 isolates, based on the number of days to first symptoms and death of melon seedlings.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 199-199
Author(s):  
R. C. Ploetz ◽  
J. L. Haynes

Race 3 of Fusarium oxysporum f. sp. lycopersici, cause of Fusarium wilt of tomato, Lycopersicon esculentum, was first recognized in Florida in 1982 on the west coast (Hillsborough and Manatee counties) (2). Approximately 10 years later, race 3 was reported in northeastern production areas of the state (Gadsden County) (1) and was observed on the east coast (Ft. Pierce area) (D. O. Chellemi, personal communication). During the 1998 to 1999 season, mature plants of Sanibel, a commercial tomato cultivar with resistance to races 1 and 2, were observed with symptoms of Fusarium wilt at the University of Florida's Tropical Research and Education Center in Homestead. Approximately 20% of the plants were conspicuously wilted, chlorotic, and necrotic in all or unilateral portions of the canopy. Internal, vascular discoloration in affected plants extended far into the canopy, distinguishing the disease from Fusarium crown rot, caused by F. oxysporum f. sp. radicis-lycopersici. Pure colonies of fungi were isolated from surface-disinfested (10 s with 70% ethanol, 2 min with 10% bleach) stem segments on potato dextrose agar (PDA) amended with streptomycin (100 mg/liter), rifamycin (50 mg/liter), and a commercial miticide (Danitol 2EHC [4 drops/liter]). Isolates were identified as F. oxysporum due to their production of typical falcate macroconidia with foot-shaped basal cells, microconidia borne in false heads only on mono-phialides, and chlamydospores. In replicated (three) greenhouse trials, six single-spore isolates were used to root-dip inoculate (107 conidia per ml) seedlings of differential tomato cultivars (Bonnie Best, no resistance; Manapal, race 1 resistance; Walter, race 1 and race 2 resistance). All isolates were pathogenic on each of the differential cultivars, and one isolate, 2-1, caused severe damage on Walter (mean rating of 3.5 on a 1 to 5 scale). The results were repeated in a second trial with the most virulent isolate. In both trials, pure colonies of F. oxysporum were recovered from symptomatic seedlings. Southeastern Florida is the last major tomatoproduction area in Florida to be affected by race 3 of F. oxysporum f. sp. lycopersici. References: (1) D. O. Chellemi and H. A. Dankers. Plant Dis. 76:861, 1992. (2) R. B. Volin and J. P. Jones. Proc. Fla. State Hortic. Soc. 95:268, 1982.


2016 ◽  
Vol 8 (1) ◽  
pp. 60-62 ◽  
Author(s):  
Ameer Junaithal Begum M. ◽  
P. Selvaraju ◽  
A. Vijayakumar

The purpose of the study was to determine the anti fungal activity of seaweed (Turbinaria conoides) extract against root rot pathogen Fusarium oxysporum. Seaweed extract was prepared from the species T. conoides collected from Rameswaram coastal area of Tamil Nadu during December was used for this study. Different concentrations of the extract viz., 5 %, 10 %, 15 % and 20 % was evaluated for their antifungal activity against F. oxysporum using poisoned food technique along with control and carbendazim (0.2 %) as check. No mycelial growth (0 cm) was observed in 15 % and 20 % sea weed extract weed extract treated plates even after 6 days ofincubation. Though the visible inhibition of mycelial growth was noticed in all the concentrations, the increased concentration of 15 and 20 % had shown 100 % inhibition. So, the lower concentration of 15 % can be best in controlling the F. oxysporum fungi. GC-MS analysis of seaweed extract showing the presence of several antimicrobial compounds in seaweeds may be the reason for such inhibition.


Author(s):  
B. Mohana ◽  
Shiva Kameshwari ◽  
M. K. Prasana Kumar

Aqueous extract of Urginea indica kunth. (Udupi acccession) was screened for antifungal activity against Fusarium oxysporum, Sclerotium rolfsii, Magnaporthe orzae, Aspergillus flavus, Alternaria alternata, Aspergillus niger and Fusarium moniliformae by poisoned food technique. The results confirmed Urginea indica extracts showed very significant antifungal activity against Fusarium oxysporum and showed significant inhibition for Sclerotium rolfsii and Magnapothea orzaea it showed no activity against Aspergillus niger and Aspergillus flavus. All the activity was evaluated to determine the lowest concentration required to inhibit visible mycelial growth of the pathogen at minmum concentration. Fusarium oxysporum showed very significant inhibition in 10% concentration (Reconfirmed) while Sclerotium showed significant inhibition in 25% concentration followed by Magnoporthe oryzae. The number of sclerotia spores formed was also reduced drastically. These results show that a potential and safe antifungal agent can be obtained from Urginea.


Sign in / Sign up

Export Citation Format

Share Document