scholarly journals Effect of Phytohormones Supplementation under Nitrogen Depletion on Biomass and Lipid Production of Nannochloropsis oceanica for Integrated Application in Nutrition and Biodiesel

2021 ◽  
Vol 13 (2) ◽  
pp. 592
Author(s):  
Hussein El-Sayed Touliabah ◽  
Adel W. Almutairi

Economic viability of biodiesel production relies mainly on the productivity of biomass and microalgal lipids. In addition, production of omega fatty acids is favorable for human nutrition. Thus, enhancement of lipid accumulation with high proportion of omega fatty acids could help the dual use of microalgal lipids in human nutrition and biodiesel production through biorefinery. In that context, phytohormones have been identified as a promising factor to increase biomass and lipids production. However, nitrogen limitation has been discussed as a potential tool for lipid accumulation in microalgae, which results in simultaneous growth retardation. The present study aims to investigate the combined effect of N-depletion and 3-Indoleacetic acid (IAA) supplementation on lipid accumulation of the marine eustigmatophyte Nannochloropsis oceanica as one of the promising microalgae for omega fatty acids production. The study confirmed that N-starvation stimulates the lipid content of N. oceanica. IAA enhanced both growth and lipid accumulation due to enhancement of pigments biosynthesis. Therefore, combination effect of IAA and nitrogen depletion showed gradual increase in the dry weight compared to the control. Lipid analysis showed lower quantity of saturated fatty acids (SFA, 26.25%) than the sum of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). Under N-depletion, SFA decreased by 12.98% compared to the control, which recorded much reduction by increasing of IAA concentration. Reduction of SFA was in favor of PUFA, mainly omega-6 and omega-3 fatty acids which increased significantly due to IAA combined with N-depletion. Thus, the present study suggests a biorefinery approach for lipids extracted from N. oceanica for dual application in nutrition followed by biodiesel production.

Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 484 ◽  
Author(s):  
Thanapa Atikij ◽  
Yolani Syaputri ◽  
Hitoshi Iwahashi ◽  
Thanit Praneenararat ◽  
Sophon Sirisattha ◽  
...  

Microalgal lipids are a source of valuable nutritional ingredients in biotechnological industries, and are precursors to biodiesel production. Here, the effects of salt-induced stresses, including NaCl, KCl, and LiCl stresses, on the production of lipid in green microalga Chlamydomonas reinhardtii (137c) were investigated. NaCl stress dramatically increased saturated fatty acids (SFAs), which accounted for 70.2% of the fatty acid methyl ester (FAMEs) under stress. In contrary, KCl stress led to a slight increase in SFAs (47.05%) with the remaining being polyunsaturated fatty acids (PUFAs) (45.77%). RT-PCR analysis revealed that the genes involved in FA biosynthesis, such as PDH2, ACCase, MAT and KAS2, were up-regulated by NaCl-induced stress. Conversely, the genes responsible for the Kennedy pathway were suppressed. The alteration of FA homeostasis was further assessed by overexpressing MAT, the enzyme responsible for the production of malonyl-ACP, a key building block for FA biosynthesis, in the cyanobacterium Synechococcus elongatus PCC 7942. Intracellular FA composition was affected, with a predominant synthesis of SFAs in transformed cells. Owing to the diversity and relative abundance of SFAs, monounsaturated fatty acid (MUFAs) and PUFAs enable the feasibility of using microorganisms as a source of microalgal lipids or valuable nutritional ingredients; salt-induced stress and expression of MAT are useful in providing precursors for enhanced lipid production.


2020 ◽  
pp. 152-158
Author(s):  
Gour Gopal Satpati ◽  
Ruma Pal

The increase of total lipid and fatty acids production was studied under different nutrient stress conditions using the macroalga, Chaetomorpha aerea. The effects of nitrogen, phosphorus, ethylene diamine tetra-acetate and sodium chloride on the growth and lipid accumulation were systematically investigated in laboratory conditions. The biomass was harvested at different stages of cultivation and assessed. The maximum changes of growth and lipid accumulation were observed in the exponential phase at different cultural conditions. The two-fold increase of total lipid was found in the order of 28.27±0.04 % (at 0.1 g/L nitrogen) > 27.30±0.37 % (at 0.5 g/L of phosphorus) > 25.86±0.77 % (at 0.05 g/L of EDTA)> 24.37±0.04 % (at 0.05 g/L NaCl) on 8th day of cultivation. The fatty acids were identified and quantified by gas chromatography mass spectrometry (GC-MS). The alga produces significantly high amount of monounsaturated fatty acid (MUFA) and saturated fatty acids (SFA) than the polyunsaturated fatty acids (PUFA) in different cultural conditions. The elevated levels of C16:1, C18:1 and C20:1 was identified under nitrate, phosphate and salt stress conditions, which are more suitable for biodiesel production.


2014 ◽  
Vol 32 (2) ◽  
pp. 255-265 ◽  
Author(s):  
Omar Montenegro R. ◽  
Stanislav Magnitskiy ◽  
Martha C. Henao T.

This study was conducted to assess fruit and seed yield, oil content and oil composition of Jatropha curcas fertilized with different doses of nitrogen and potassium in Espinal (Tolima, Colombia). The yields ranged from 4,570 to 8,800 kg ha-1 of fruits and from 2,430 to 4,746 kg ha-1 of seeds. These yields showed that the fertilizer dose of 150 kg ha-1 N + 120 kg ha-1K increased fruit production by 92% and seed production by 95%, which represents an increase of about 100% in oil production, which increased from 947 to 1,900 kg ha-1. The total oil content in the seeds ranged from 38.7 to 40.1% (w/w) with a high content of the unsaturated fatty acids oleic (> 47%) and linoleic acid (> 29%). The highest content of oleic acid in the seed oil was from the unfertilized control plants and plants with an application of 100 kg ha-1 of N and 60 kg ha-1 of K, with an average of 48%. The lowest content of oleic acid was registered when a low dose of nitrogen and a high level of potassium were applied at a ratio of 1:2.4 and doses of 50 kg ha-1 N + 120 kg ha-1 K, respectively. Low contents of the saturated fatty acids palmitic (13.4%) and stearic (7.26%) were obtained, making this oil suitable for biodiesel production. The nitrogen was a more important nutrient for the production and quality of oil in J. curcas than potassium under the studied conditions of soil and climate.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3648
Author(s):  
Savienne M. F. E. Zorn ◽  
Cristiano E. R. Reis ◽  
Messias B. Silva ◽  
Bo Hu ◽  
Heizir F. De Castro

This study aims to evaluate the potential of consortium biomass formation between Mucor circinelloides, an oleaginous filamentous fungal species, and Chlorella vulgaris, in order to promote a straightforward approach to harvest microalgal cells and to evaluate the lipid production in the consortium system. A synthetic medium with glucose (2 g·L−1) and mineral nutrients essential for both fungi and algae was selected. Four different inoculation strategies were assessed, considering the effect of simultaneous vs. separate development of fungal spores and algae cells, and the presence of a supporting matrix aiming at the higher recovery of algae cell rates. The results were evaluated in terms of consortium biomass composition, demonstrating that the strategy using a mature fungal mycelium with a higher algae count may provide biomass samples with up to 79% of their dry weight as algae, still promoting recovery rates greater than 97%. The findings demonstrate a synergistic effect on the lipid accumulation by the fungal strain, at around a fourfold increase when compared to the axenic control, with values in the range of 23% of dry biomass weight. Furthermore, the fatty acid profile from the samples presents a balance between saturated and unsaturated fatty acids that is likely to present an adequate balance for applications such as biodiesel production.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 221
Author(s):  
S. N. Ibrahim ◽  
K. A. Radzun ◽  
K. Ismail

Chlorella vulgaris is one of the promising microalgae strains that can produce high yield of bio-oils. The C. vulgaris was pretreated with microwave irradiation prior to extraction using supercritical carbon dioxide (SCCO2). Fourier transform infrared spectroscopy (FTIR) analysis showed microwave irradiation pretreatment does not affect the material composition of C. vulgaris. Scanning electron microscopy (SEM) of the microwave irradiation pretreated microalgae showed an agglomeration of the cells with the cells shape became distorted due to rupturing of the cell walls. Optimization of the SCCO2 process parameters (pressure, temperature and CO2 flow rate) was performed by using response surface methodology (RSM) with central composite design (CCD). Two factors significantly affecting the extraction yield were temperature and pressure. The model equation also predicted the optimum condition for the SCCO2 (without microwave pretreatment) at 70 , 5676 psi and 7 sL/ min while optimum condition for SCCO2 (microwave irradiation pretreatment) at 63 , 5948 psi and 10 sL/ min. High amount of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), -linolenic acid and palmitoleic acid were found in the extracted oil with microwave irradiation pre-treatment sample.  In addition, the polyunsaturated fatty acids (PUFA) content in the microwave irradiation pretreated oil was considerably low and is desirable for biodiesel production. 


2015 ◽  
Vol 15 (1) ◽  
pp. 247-261 ◽  
Author(s):  
Michał Puchała ◽  
Józefa Krawczyk ◽  
Zofia Sokołowicz ◽  
Katarzyna Utnik-Banaś

AbstractThe objective of the study was to determine the effect of breed (A) and free-range production system (B) on quality of meat from hens of two breeds, Greenleg Partridge (Z-11) and Rhode Island Red (R-11), which are under the biodiversity conservation programme in Poland. Subjects were 120 hens of each breed, which were assigned to two treatment groups differing in the housing system: 60 layers were kept on litter without outdoor access (C) and 60 layers were raised on litter with access to free range (FR). At 56 weeks of age, 8 hens were randomly chosen from each group, slaughtered, and subjected to slaughter analysis. It was found from the study that carcasses from 56-week-old multi-purpose hens are characterized by poor muscle development and considerable fat content. After the first year of egg production, the meat of hens was characterized by low tenderness, high water holding capacity, and a fatty acid profile that was desirable from the viewpoint of human nutrition. In the meat of hens that completed their first year of egg production, the profile of fatty acids was beneficial from the standpoint of human nutrition. The free-range production system reduced carcass fatness, enhanced carcass and meat yellowness, and increased the proportion of polyunsaturated fatty acids (both n-6 and n-3) in breast and leg muscles while causing no significant changes in the content of saturated fatty acids. The meat of the native Z-11 breed was found to contain less saturated and more unsaturated fatty acids compared to the meat of R-11 hens. There was no statistically significant effect of the production system on the sensory evaluation of cooked meat and broth.


e-xacta ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 11
Author(s):  
Najla Postaue ◽  
Leila Cristina Moraes ◽  
Rosa Maria Farias Asmus

A biomassa de microalgas tem apresentado potencial para produção de biodiesel, contudo a viabilidade do cultivo de microalgas depende de fonte de nutrientes de baixo custo. O presente estudo objetivou utilizar o chorume como fonte de nutrientes para microalgas. Os experimentos foram conduzidos visando avaliar a obtenção da biomassa microalgal, conversão de lipídios e rendimento em ésteres metílicos de ácidos graxos, para os meios de cultivos utilizando 5%, 12% e 20% de chorume, com concentrações de 0,02, 0,05 e 0,08 g N. L-1 e para meio de controle contendo 1% de, Nitrogênio (N), Fósforo (P) e Potássio (K), na concentração de 20 g L-1, 5 g L-1 e 20 g L-1, respectivamente. A microalga utilizada neste trabalho foi a de classe Chlorophyceae e família Coccomyxaceae. Os resultados demonstraram que o meio com concentração de 12% de chorume obteve melhores resultados, possibilitando alcançar 1,19 g de biomassa, conversão de 108,15 mg g-1 de lipídios e conteúdo de ésteres de 410,77mg g-1, a microalga utilizada apresentou ainda predominância dos ácidos graxos palmítico e oleico, apresentando baixa quantidade de ácidos graxos saturados o que pode fornecer ao combustível, resistência ao frio. E tais aspectos demonstraram que o chorume pode ser uma fonte promissora de nutrientes para o cultivo das microalgas estudadas. AbstractMicroalgae biomass has presented potential for biodiesel production, however the viability of microalgae cultivation depends on low cost nutrient source. The present study aimed to use leachate as a source of nutrients for microalgae. The experiments were conducted to evaluate the microalgal biomass, lipid conversion and yield in fatty acid methyl esters, for the culture media using 5%, 12% and 20% leachate, with concentrations of 0.02, 0.05 and 0.08 g N. L-1 and for control medium containing 1% Nitrogen (N), Phosphorus (P) and Potassium (K), at a concentration of 20 g L-1, 5 g L-1 and 20 g L-1, respectively. The microalgae used in this work was Chlorophyceae class and Coccomyxaceae family. The results showed that the medium with a concentration of 12% of leachate obtained better results, allowing to reach 1.19 g of biomass, conversion of 108.15 mg g-1 of lipids and esters content of 410,77 mg g-1. The microalgae used also presented predominance of palmitic and oleic fatty acids, presenting low amount of saturated fatty acids which can provide the fuel with cold resistance. And these aspects demonstrated that the leachate can be a promising source of nutrients for the cultivation of the studied microalgae.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1009
Author(s):  
Gwon Woo Park ◽  
Seongsoo Son ◽  
Myounghoon Moon ◽  
Subin Sin ◽  
Kyoungseon Min ◽  
...  

Microbial lipid production from oleaginous yeasts is a promising process for the sustainable development of the microbial biodiesel industry. However, the feedstock cost poses an economic problem for the production of microbial biodiesel. After lipid extraction, yeast biomass can be used as an organic source for microbial biodiesel production. In this study, volatile fatty acids (VFAs), produced via anaerobic digestion of a lipid-extracted yeast (LEY) residue, were utilized as a carbon source for the yeast Cryptococcus curvatus. The response surface methodology was used to determine the initial pH and inoculum volume for the optimal VFA production. The experimental result for VFA concentration was 4.51 g/L at an initial pH of 9 and an inoculation 25%. The optimization results from the response surface methodology showed that the maximal VFA concentration was 4.58 g/L at an initial pH of 8.40 and an inoculation of 39.49%. This study indicates that VFAs from LEY can be used as a carbon source for microbial biodiesel production, with the potential to significantly reduce feedstock costs.


2004 ◽  
Vol 58 (2) ◽  
pp. 73-78 ◽  
Author(s):  
Dejan Skala ◽  
Sandra Glisic

Biodiesel is defined as a fuel which may be used as pure biofuel or at high concentration in mineral oil derivatives, in accordance with specific quality standards for transport applications. The main raw material used for biodiesel production is rapeseed, which contains mono-unsaturated acids (about 60%) and also poly-unsaturated fatty acids (C 18:1 and C 18:3) in a lower quantity, as well as some undesired saturated fatty acids (palmitic and stearic acids). Other raw materials have also been used in research and the industrial production of biodiesel (palm oil, sunflower oil, soybean oil, waste plant oil, animal fats, etc). The historical background of biodiesel production, installed industrial capacities, as well as the Directive of the European Parliament and of the Council (May 2003) regarding the promotion of the use of biofuels or other renewable fuels for transport are discussed in the first part of this article. The second part focuses on some new concepts for the future development of technology for biodiesel production, based on the application of non-catalytic transesterification under supercritical conditions or the use of lipases as an alternative catalyst for this reaction.


2020 ◽  
Author(s):  
Nhung TT Pham ◽  
Maarten Reijnders ◽  
Maria Suarez-Diez ◽  
Bart Nijsse ◽  
Jan Springer ◽  
...  

Abstract Background: Cutaneotrichosporon oleaginosus ATCC 20509 is a fast growing oleaginous basidiomycete yeast that is able to grow in a wide range of low-cost carbon sources including crude glycerol, a byproduct of biodiesel production. When glycerol is used as a carbon source, this yeast can accumulate more than 50% lipids (w/w) with high concentrations of mono-unsaturated fatty acids.Results: To increase our understanding of this yeast and to provide a knowledge base for further industrial use, a FAIR re-annotated genome was used to build a genome-scale, constraint-based metabolic model containing 1553 reactions involving 1373 metabolites in 11 compartments. A new description of the biomass synthesis reaction was introduced to account for massive lipid accumulation in conditions with high carbon to nitrogen (C/N) ratio in the media. This condition-specific biomass objective function is shown to better predict conditions with high lipid accumulation using glucose, fructose, sucrose, xylose, and glycerol as sole carbon source.Conclusion: Contributing to the economic viability of biodiesel as renewable fuel, C. oleaginosus ATCC 20509 can effectively convert crude glycerol waste streams in lipids as a potential bioenergy source. Performance simulations are essential to identify optimal production conditions and to develop and fine tune a cost-effective production process. Our model suggests ATP-citrate lyase as a possible target to further improve lipid production.


Sign in / Sign up

Export Citation Format

Share Document