scholarly journals Design of Consumables in a Resource-Efficient Economy—A Literature Review

2021 ◽  
Vol 13 (3) ◽  
pp. 1036
Author(s):  
Siri Willskytt

Consumable products have received less attention in the circular economy (CE), particularly in regard to the design of resource-efficient products. This literature review investigates the extent to which existing design guidelines for resource-efficient products are applicable to consumables. This analysis is divided into two parts. The first investigates the extent to which general product-design guidelines (i.e., applicable to both durables and consumables) are applicable to consumables. This analysis also scrutinizes the type of recommendations presented by the ecodesign and circular product design, to investigate the novel aspects of the CE in product design. The second analysis examines the type of design considerations the literature on product-type specific design guidelines recommends for specific consumables and whether such guidelines are transferable. The analysis of general guidelines showed that, although guidelines are intended to be general and applicable to many types of products, their applicability to consumable products is limited. Less than half of their recommendations can be applied to consumables. The analysis also identified several design considerations that are transferable between product-specific design guidelines. This paper shows the importance of the life-cycle perspective in product design, to maximize the opportunities to improve consumables.

2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


2021 ◽  
Vol 13 (12) ◽  
pp. 6974
Author(s):  
Charlotte Cambier ◽  
Waldo Galle ◽  
Niels De De Temmerman

In addition to the environmental burden of its construction and demolition activities, the Flemish housing market faces a structural affordability challenge. As one possible answer, this research explores the potential of so-called expandable houses, being built increasingly often. Through specific design choices that enable the disassembly and future reuse of individual components and so align with the idea of a circular economy, expandable houses promise to provide ever-changing homes with a smaller impact on the environment and at a lower cost for clients. In this paper, an expandable house suitable for various housing needs is conceived through a scenario-based research-by-design approach and compared to a reference house for Flanders. Subsequently, for both houses the life cycle costs are calculated and compared. The results of this exploration support the proposition that designing expandable houses can be a catalyst for sustainable, circular housing development and that households could benefit from its social, economic and ecological qualities. It requires, however, a dynamic perspective on evaluating their life-cycle impact.


2020 ◽  
Vol 12 (23) ◽  
pp. 9861
Author(s):  
Jorge Martínez Leal ◽  
Stéphane Pompidou ◽  
Carole Charbuillet ◽  
Nicolas Perry

In the context of a circular economy, one can observe that (i) recycling chains are not adapted enough to the end-of-life products they have to process and that (ii) products are not sufficiently well designed either to integrate at best their target recycling chain. Therefore, a synergy between product designers and recycling-chains stakeholders is lacking, mainly due to their weak communication and the time-lag between the product design phase and its end-of-life treatment. Many Design for Recycling approaches coexist in the literature. However, to fully develop a circular economy, Design from Recycling also has to be taken into account. Thus Re-Cycling, a complete circular design approach, is proposed. First, a design for recycling methodology linking recyclability assessment to product design guidelines is proposed. Then, a design from recycling methodology is developed to assess the convenience of using secondary raw materials in the design phase. The recyclability of a smartphone and the convenience of using recycled materials in a new cycle are both analyzed to demonstrate our proposal. The Fairphone 2® and its treatment by the WEEE French takeback scheme are used as a case study.


2016 ◽  
Vol 18 (14) ◽  
pp. 3914-3934 ◽  
Author(s):  
James H. Clark ◽  
Thomas J. Farmer ◽  
Lorenzo Herrero-Davila ◽  
James Sherwood

This perspective on the circular economy is a call for chemists to value resources through responsible product design.


Author(s):  
Cassandra Telenko ◽  
Carolyn C. Seepersad ◽  
Michael E. Webber

Design for environment principles and guidelines help designers create greener products during the early stages of design when life cycle analysis is not feasible. However, the available guidelines are not exhaustive and a general methodology for discovering guidelines has yet to be proposed. In this paper, a method for identifying green design guidelines is presented, which aims to fulfill the need for more comprehensive guidelines. The method combines typical aspects of product design, such as customer needs analysis, with reverse engineering and life cycle analysis. Although reverse engineering is commonly applied to studies of disassembly and recyclability, the methodology and case study herein show how reverse engineering can be applied to areas of product utilization and energy consumption in particular. A general description of the methodology helps readers apply it to their own studies, and a case study of electric kettles shows how each step of the method was applied to reveal four new design guidelines.


2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Cassandra Telenko ◽  
Carolyn Conner Seepersad

A reverse engineering methodology is presented for identifying environmentally conscious design guidelines for use in the conceptual stages of product design. Environmentally conscious principles and guidelines help designers improve environmental impacts of products by making better decisions during conceptual design stages when data for life cycle analysis (LCA) are sometimes scarce. The difficulty in using the current knowledge base of guidelines is that it is not exhaustive and conflicts are not well understood. In response, the authors propose a general method for expanding the current set of guidelines and for understanding potential environmental tradeoffs. The method helps designers extract environmentally conscious design guidelines from a set of functionally related products by combining reverse engineering with LCA. The guidelines and LCA results can then be used to inform subsequent design cycles without repeating the process. Although in environmentally conscious design, reverse engineering is commonly applied to studies of disassembly and recyclability, the methodology and case study herein show how reverse engineering can be applied to the utilization stage of a product’s life cycle as well. The method is applied to an example of electric kettles to demonstrate its utility for uncovering new design guidelines.


Sign in / Sign up

Export Citation Format

Share Document