Resource Scarcity and Sustainability—The Shapes Have Shifted but the Stakes Keep Rising
The objective is to provide an interpretive reading of the literature in resource scarcity and sustainability theory from the nineteenth century to the present time, focusing on shifts that have occurred in problem definition, conceptual framing, research tools applied, findings, and their implications. My reading shows, as one would expect, that the discourse has become more technical and the analysis more sophisticated; special cases have been incorporated into the mainstream of theory; and, where relevant, dynamic formulations have largely supplanted static analysis. However, that is barely scratching the surface. Here, I focus on more fundamental shifts. Exhaustible and renewable resource analyses were incorporated into the mainstream theory of financial and capital markets. Parallels between the resources and environmental spheres were discovered: market failure concepts, fundamental to environmental policy, found applications in the resources sector (e.g., fisheries), and renewable resource management concepts and approaches (e.g., waste assimilation capacity) were adopted in environmental policy. To motivate sustainability theory and assessment, there has been a foundational problem shift from restraining human greed to dealing with risk viewed as chance of harm, and a newfound willingness to look beyond stochastic risk to uncertainty, ambiguity, and gross ignorance. Newtonian dynamics, which seeks a stable equilibrium following a shock, gave way to a new dynamics of complexity that valued resilience in the face of shocks, warned of potential for regime shifts, and focused on the possibility of systemic collapse and recovery, perhaps incomplete. New concepts of sustainability (a safe minimum standard of conservation, the precautionary principle, and planetary boundaries) emerged, along with hybrid approaches such as WS-plus which treats weak sustainability (WS) as the default but may impose strong sustainability restrictions on a few essential but threatened resources. The strong sustainability objective has evolved from maintaining baseline flows of resource services to safety defined as minimizing the chance of irreversible collapse. New tools for management and policy (sustainability indicators and downscaled planetary boundaries) have proliferated, and still struggle to keep up with the emerging understanding of complex systems.