scholarly journals Stormwater Runoff Treatment Using Pervious Concrete Modified with Various Nanomaterials: A Comprehensive Review

2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.

2017 ◽  
Vol 75 (10) ◽  
pp. 2443-2453 ◽  
Author(s):  
Henry H. Mungondori ◽  
Sandile Mtetwa ◽  
Lilian Tichagwa ◽  
David M. Katwire ◽  
Pardon Nyamukamba

The adsorption of a multi-component system of ferrous, chromium, copper, nickel and lead on single, binary and ternary composites was studied. The aim of the study was to investigate whether a ternary composite of clay, peanut husks (PH) and saw-dust (SD) exhibited a higher adsorption capacity than that of a binary system of clay and SD as well as a single component adsorbent of PH alone. The materials were used in their raw state without any chemical modifications. This was done to retain the cost effective aspect of the naturally occurring adsorbents. The adsorption capacities of the ternary composite for the heavy metals Fe2+, Cr3+, Cu2+, Ni2+ and Pb2+ were 41.7 mg/g, 40.0 mg/g, 25.5 mg/g, 41.5 mg/g and 39.0 mg/g, respectively. It was found that the ternary composite exhibited excellent and enhanced adsorption capacity compared with both a binary and single adsorbent for the heavy metals Fe2+, Ni2+ and Cr3+. Characterization of the ternary composites was done using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Kinetic models and adsorption isotherms were also studied. The pseudo second order kinetic model and the Langmuir adsorption isotherm best described the adsorption mechanisms for the ternary composite towards each of the heavy metal ions.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yiping Guo ◽  
Weiyong Zhu ◽  
Guoting Li ◽  
Xiaomin Wang ◽  
Lingfeng Zhu

The convenient and feasible pretreatment method of alkali treatment is very common in the degradation process of wheat straw. However, its utilization in the pretreatment of wheat straw as alternative adsorbents for aqueous heavy metals remediation is rarely reported. The present study investigated the removal efficiency of Cu(II) ions using wheat straw with alkali pretreatment. The condition of alkali treatment on wheat straw was optimized with the adsorption capacity of Cu(II) as indicator using single-factor experiments. The influences of wheat straw dosages, pH values, contact time, and temperatures on adsorption performance for both untreated wheat straw (UWS) and alkali-treated wheat straw (AWS) were investigated. Results showed that the relatively large removal rate of Cu(II) could be obtained, and chemical behavior occurred during the adsorption process. Characteristic analysis found that the major function of alkali treatment to wheat straw was to introduce the hydroxy group, which resulted in the increase of -C-O- group. Although the adsorption capacity is not as high as the one of ligands supported adsorbents, the method is easy to operate and has a wide range of application; at the same time, it could realize both purposes of treating heavy metal pollution and solid wastes.


Author(s):  
Karina T. García-Rangel ◽  
Francisco Gavi-Reyes ◽  
Rogelio Carrillo-González ◽  
Mario Martínez-Menes

Dregs from the former Texcoco Lake were used to build the new international Mexico City airport and pumped in a quarry. The dredged sediments could have heavy metals (HMs) capable of polluting water bodies. The study’s objective was to evaluate the content of Cu, Zn, Cd, Ni, and Pb of the sediments deposited in the quarry, their transfer to the runoff water and the adsorption of Cu, Zn, Ni, and Pb in the subsoil. Other variables measured were water infiltration rate, HM in sediments, water runoff, and the HM adsorption in the subsoil. The infiltration rate in sediments is low (≤ 10-7 cm/h). HMs in sediments are within the maximum permissible limits by Mexican regulations, for sewage sludge. The HMs in the runoff from the sediments are in the range of the Mexican regulations for the discharge into rivers and for irrigation purposes of agricultural soils. They are also within safe limits for irrigation use considered by FAO and EPA. The materials adsorption capacity of Pb (1250 mg kg-1), Zn (588 mg kg-1), and Cu (1250 mg kg-1) is higher than the concentration of metals in the runoff water, so the movement of HMs down into the subsoil is unlikely.  


Author(s):  
Darren Drapper ◽  
Andy Hornbuckle

Urban stormwater runoff from a medium-density residential development in southeast Queensland has been monitored in the field since November 2013. A treatment train installed on the site includes rainwater tanks collecting roofwater, 200-micron mesh baskets installed in grated gully pits and two 850 mm high media filtration cartridges installed in an underground 4 m3 vault. A monitoring protocol developed by research partners, Queensland University of Technology (QUT), guided the monitoring process over a 4.5-year period. Heavy metals were included in the list of analytes during the monitoring period as the catchment is within 1 km of the environmentally-sensitive Moreton Bay, Queensland. Removal efficiencies observed at this site for the regulated pollutants; total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN) for the pit baskets were 61%, 28% and 45% respectively. The cartridge filters removed 78% TSS, 59% TP, 42% TN, 40% total copper and 51% total zinc. As the measured influent concentrations to the cartridge filters were low when compared to industry guidelines, the dataset was merged with international field results for TSS (n=39) and TP (n=32) but truncated within anticipated guideline levels. The combined dataset for the media filter demonstrates performance at 89% TSS, 66% TP and 42% TN. The total gross pollutant generation rate from the medium-density residential catchment was observed to be 0.24 m3/Ha/year, with a corresponding air-dried mass of 142.5 kg/Ha/year. Less than 2% of the gross pollutant mass was anthropogenic. The findings of this research suggest that the treatment train, and in particular the media filter, holds promise for the removal of total copper and total zinc, in addition to TSS, TP and TN, from urban stormwater runoff. Based on a maximum, low risk trigger TN concentration of 1.5 mg/L, the field test data from 4.5 years of operation and standard maintenance, suggests a 5.5-year replacement interval for the media filters.


2012 ◽  
Vol 461 ◽  
pp. 601-605
Author(s):  
Xiu Yan Zhou ◽  
Xiang Xin Xue ◽  
Yu Hua Zhao ◽  
Ou Liu

In this study, the sorption of single heavy metal (Cu2+, Pb2+ and Zn2+) and multiple heavy metals in simulated metallurgical wastewater by montmorillonite was investigated. The effect of adsorption time and temperature conditions, etc. on the adsorption was also studied. The results showed that in the same concentration of adsorbent dosage, removal rate of single heavy metal is the highest (99.9%, 88.1% and 98.3%) when the concentration of Cu2+, Pb2+ and Zn2+ is 50 mg/L, 20mg/L and 100mg/L, respectively. The adsorption of multiple heavy metals in simulated metallurgical wastewater is the highest in 4 hours at 20°C. The adsorption capacity is in order of Pb2+≈Zn2+>Cu2+>Cd2+ and removal rate is 90.8%, 87.3%, 70.0% and 51.6%, respectively.


2021 ◽  
Author(s):  
Wei Liao ◽  
Di Bao ◽  
Huiqiang Li ◽  
Ping Yang

Abstract Two novel adsorbents of thiol- and amino-functionalized GO grafted onto LDH (LDH@GO-NH2 and LDH@GO-SH) were synthesized and contrasted for adsorption properties for Cu(II) and Cd(II). Characterization experiments illustrated that thiol group (-SH) and amino group (-NH2) were existed onto LDH@GO-NH2 and LDH@GO-SH. Adsorption isotherm results showed that the adsorption processes were satisfactorily fitted by both Langmuir and Freundlich models. The maximum adsorption capacity of Cd(II) on LDH@GO-SH at 308 K was 102.77 mg/g, which was about triple that of LDH@GO-NH2. The enhancement in adsorption capacity was due to the cooperative effect of LDH and GO-SH. The kinetic experimental data for LDH@GO-NH2 and LDH@GO-SH were found to be in good agreement with pseudo-second-order model. The thermodynamic parameters calculated from the temperature dependent adsorption isotherms indicated that the adsorption was a spontaneous and endothermic process. The possible adsorption mechanisms comprising formation of precipitation, isomorphic substitution of Mg(II), and formation of complexation with amino-groups and thiol-groups were proposed. Desorption experiments put into evidence that the LDH@GO-NH2 and LDH@GO-SH may be promising suitable candidates for the remediation of metal ions from aqueous solutions in real work in the near future.


2004 ◽  
Vol 39 (4) ◽  
pp. 406-416 ◽  
Author(s):  
Jim Wood ◽  
Samir Dhanvantari ◽  
Mingdi Yang ◽  
Quintin Rochfort ◽  
Patrick Chessie ◽  
...  

Abstract Stormwater treatment by lamellar and conventional clarification, with and without flocculant addition, was investigated in Toronto, Ontario, using a pilot-scale rectangular clarifier vessel with removable lamellar plates. During the 2001 to 2003 field seasons, 76 stormwater runoff events were characterized with respect to flow and quality, and further investigated for stormwater treatment. Most stormwater constituent concentrations at this site exceeded those for the U.S. NURP median urban site. A cationic polymeric flocculant dosed at 4 mg/L, with lamellar clarification, provided the best results with a total suspended solids (TSS) removal of 83% at total vessel surface loads up to 36 m/h. The clarification processes produced a concentrated sludge, which was strongly polluted by heavy metals and would require special disposal procedures.


Gels ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 30
Author(s):  
Maimuna Akter ◽  
Maitry Bhattacharjee ◽  
Avik Kumar Dhar ◽  
Fahim Bin Abdur Rahman ◽  
Siddika Haque ◽  
...  

Finding affordable and environment-friendly options to decontaminate wastewater generated with heavy metals and dyes to prevent the depletion of accessible freshwater resources is one of the indispensable challenges of the 21st century. Adsorption is yet to be the most effective and low-cost wastewater treatment method used for the removal of pollutants from wastewater, while naturally derived adsorbent materials have garnered tremendous attention. One promising example of such adsorbents is hydrogels (HGs), which constitute a three-dimensional polymeric network of hydrophilic groups that is highly capable of adsorbing a large quantity of metal ions and dyes from wastewater. Although HGs can also be prepared from synthetic polymers, natural polymers have improved environmental benignity. Recently, cellulose-based hydrogels (CBHs) have been extensively studied owing to their high abundance, biodegradability, non-toxicity, and excellent adsorption capacity. This review emphasizes different CBH adsorbents in the context of dyes and heavy metals removal from wastewater following diverse synthesis techniques and adsorption mechanisms. This study also summarizes various process parameters necessary to optimize adsorption capacity followed by future research directions.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 908 ◽  
Author(s):  
Christian Lieske ◽  
Dominik Leutnant ◽  
Mathias Uhl

Decentralized treatment of stormwater runoff from heavily polluted surface can be a good solution for effective source control. Decentralized stormwater treatment systems (DS) and test procedures to monitor their performance, have been developed in recent years. At present in Germany, only lab-based tests are officially established to determine the removal efficiency of Total Suspended Solids (TSS), and in situ monitoring is still lacking. Furthermore, the fine fraction of TSS with particle sizes less than 63 µm (TSS63) have been established as a new design parameter in Germany, because of their substitute characteristics of adsorbing pollutant substances. For research and evaluation purposes continuous data of urban stormwater runoff quantity and quality at the in- and outflow of two different DS at two different sites were collected. Turbidity is used as a surrogate for TSS. Continuous turbidity data and time proportional sampling served to obtain (i) regression coefficients and (ii) to determine the TSS removal efficiency of DS. For a wide range of events the total removal efficiency of DS1 was 29% for TSS and 19% for TSS63 and for DS2 19% for TSS and 16% for TSS63. An event-based data analysis revealed a high variability of the efficiencies and its uncertainties. Moreover, outwash of still suspended or remobilization of already deposited material was observed at individual events. At both sites TSS63 dominates urban stormwater runoff as indicated by the mean ratios of TSS63 to TSS of 0.78 at the inflows and 0.89 at the outflows of both DS. A significant shift of TSS63 ratio from inflow to outflow demonstrates that TSS63 particles were removed less efficiently than coarser particles by DS1, for DS2 data was too heterogeny. It clarifies that common sedimentation methods can only contribute to a small extent to the reduction of solid emissions if the stormwater runoff contains mainly fine-particle solids. The findings suggest that treatment of urban stormwater runoff with high TSS63 pollution requires additional techniques such as a proper filtering to retain fine particles more effective.


Alloy Digest ◽  
1991 ◽  
Vol 40 (10) ◽  

Abstract ZYMAXX provides outstanding compressive creep resistance, toughness and chemical inertness at high temperatures and pressures and under adverse conditions. They have a wide range of uses beyond chemical processing, including aerospace and automotive applications, general industrial equipment, home appliances, farm and construction equipment. This datasheet provides information on physical properties, hardness, tensile properties, and compressive strength as well as fracture toughness and creep. It also includes information on corrosion resistance. Filing Code: Cp-18. Producer or source: E. I. Dupont de Nemours & Company Inc..


Sign in / Sign up

Export Citation Format

Share Document