scholarly journals Forecasting Model for Stock Market Based on Probabilistic Linguistic Logical Relationship and Distance Measurement

Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 954
Author(s):  
Aiwu Zhao ◽  
Junhong Gao ◽  
Hongjun Guan

The fluctuation of the stock market has a symmetrical characteristic. To improve the performance of self-forecasting, it is crucial to summarize and accurately express internal fluctuation rules from the historical time series dataset. However, due to the influence of external interference factors, these internal rules are difficult to express by traditional mathematical models. In this paper, a novel forecasting model is proposed based on probabilistic linguistic logical relationships generated from historical time series dataset. The proposed model introduces linguistic variables with positive and negative symmetrical judgements to represent the direction of stock market fluctuation. Meanwhile, daily fluctuation trends of a stock market are represented by a probabilistic linguistic term set, which consist of daily status and its recent historical statuses. First, historical time series of a stock market is transformed into a fluctuation time series (FTS) by the first-order difference transformation. Then, a fuzzy linguistic variable is employed to represent each value in the fluctuation time series, according to predefined intervals. Next, left hand sides of fuzzy logical relationships between currents and their corresponding histories can be expressed by probabilistic linguistic term sets and similar ones can be grouped to generate probabilistic linguistic logical relationships. Lastly, based on the probabilistic linguistic term set expression of the current status and the corresponding historical statuses, distance measurement is employed to find the most proper probabilistic linguistic logical relationship for future forecasting. For the convenience of comparing the prediction performance of the model from the perspective of accuracy, this paper takes the closing price dataset of Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) as an example. Compared with the prediction results of previous studies, the proposed model has the advantages of stable prediction performance, simple model design, and an easy to understand platform. In order to test the performance of the model for other datasets, we use the prediction of the Shanghai Stock Exchange Composite Index (SHSECI) to prove its universality.

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 455 ◽  
Author(s):  
Hongjun Guan ◽  
Zongli Dai ◽  
Shuang Guan ◽  
Aiwu Zhao

In time series forecasting, information presentation directly affects prediction efficiency. Most existing time series forecasting models follow logical rules according to the relationships between neighboring states, without considering the inconsistency of fluctuations for a related period. In this paper, we propose a new perspective to study the problem of prediction, in which inconsistency is quantified and regarded as a key characteristic of prediction rules. First, a time series is converted to a fluctuation time series by comparing each of the current data with corresponding previous data. Then, the upward trend of each of fluctuation data is mapped to the truth-membership of a neutrosophic set, while a falsity-membership is used for the downward trend. Information entropy of high-order fluctuation time series is introduced to describe the inconsistency of historical fluctuations and is mapped to the indeterminacy-membership of the neutrosophic set. Finally, an existing similarity measurement method for the neutrosophic set is introduced to find similar states during the forecasting stage. Then, a weighted arithmetic averaging (WAA) aggregation operator is introduced to obtain the forecasting result according to the corresponding similarity. Compared to existing forecasting models, the neutrosophic forecasting model based on information entropy (NFM-IE) can represent both fluctuation trend and fluctuation consistency information. In order to test its performance, we used the proposed model to forecast some realistic time series, such as the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), the Shanghai Stock Exchange Composite Index (SHSECI), and the Hang Seng Index (HSI). The experimental results show that the proposed model can stably predict for different datasets. Simultaneously, comparing the prediction error to other approaches proves that the model has outstanding prediction accuracy and universality.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Wangren Qiu ◽  
Xiaodong Liu ◽  
Hailin Li

In view of techniques for constructing high-order fuzzy time series models, there are three methods which are based on advanced algorithms, computational methods, and grouping the fuzzy logical relationships, respectively. The last kind model has been widely applied and researched for the reason that it is easy to be understood by the decision makers. To improve the fuzzy time series forecasting model, this paper presents a novel high-order fuzzy time series models denoted asGTS(M,N)on the basis of generalized fuzzy logical relationships. Firstly, the paper introduces some concepts of the generalized fuzzy logical relationship and an operation for combining the generalized relationships. Then, the proposed model is implemented in forecasting enrollments of the University of Alabama. As an example of in-depth research, the proposed approach is also applied to forecast the close price of Shanghai Stock Exchange Composite Index. Finally, the effects of the number of orders and hierarchies of fuzzy logical relationships on the forecasting results are discussed.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1474 ◽  
Author(s):  
Ming-Chi Tsai ◽  
Ching-Hsue Cheng ◽  
Meei-Ing Tsai

Fuzzy time series (FTS) models have gotten much scholarly attention for handling sequential data with incomplete and ambiguous patterns. Many conventional time series methods employ a single variable in forecasting without considering other variables that can impact stock volatility. Hence, this paper modified the multi-period adaptive expectation model to propose a novel multifactor FTS fitting model for forecasting the stock index. Furthermore, after a literature review, we selected three important factors (stock index, trading volume, and the daily difference of two stock market indexes) to build a multifactor FTS fitting model. To evaluate the performance of the proposed model, the three datasets were collected from the Nasdaq Stock Market (NASDAQ), Taiwan Stock Exchange Index (TAIEX), and Hang Seng Index (HSI), and the RMSE (root mean square error) was employed to evaluate the performance of the proposed model. The results show that the proposed model is better than the listing models, and these research findings could provide suggestions to the investors as references.


Author(s):  
Quoc Luu ◽  
Son Nguyen ◽  
Uyen Pham

Stock market is an important capital mobilization channel for economy. However, the market has potential loss due to fluctuations of stock prices to reflect uncertain events such as political news, supply and demand of daily trading volume. There are many approaches to reduce risk such as portfolio construction and optimization, hedging strategies. Hence, it is critical to leverage time series prediction techniques to achieve higher performance in stock market. Recently, Vietnam stock markets have gained more and more attention as their performance and capitalization improvement. In this work, we use market data from Vietnam’s two stock market to develop an incorporated model that combines Sequence to Sequence with Long-Short Term Memory model of deep learning and structural models time series. We choose 21 most traded stocks with over 500 trading days from VN-Index of Ho Chi Minh Stock Exchange and HNX-Index of Hanoi Stock Exchange (Vietnam) to perform the proposed model and compare their performance with pure structural models and Sequence to Sequence. For back testing, we use our model to decide long or short position to trade VN30F1M (VN30 Index Futures contract settle within one month) that are traded on HNX exchange. Results suggest that the Sequence to Sequence with LSTM model of deep learning and structural models time series achieve higher performance with lower prediction errors in terms of mean absolute error than existing models for stock price prediction and positive profit for derivative trading. This work significantly contribute to literature of time series prediction as our approach can relax heavy assumptions of existing methodologies such as Auto-regressive–moving-average model, Generalized Auto-regressive Conditional Heteroskedasticity. In practical, investors from Vietnam stock market can use the proposed model to develop trading strategies.


Stock market prediction through time series is a challenging as well as an interesting research areafor the finance domain, through which stock traders and investors can find the right time to buy/sell stocks. However, various algorithms have been developed based on the statistical approach to forecast the time series for stock data, but due to the volatile nature and different price ranges of the stock price one particular algorithm is not enough to visualize the prediction. This study aims to propose a model that will choose the preeminent algorithm for that particular company’s stock that can forecastthe time series with minimal error. This model can assist a trader/investor with or without expertise in the stock market to achieve profitable investments. We have used the Stock data from Stock Exchange Bangladesh, which covers 300+ companies to train and test our system. We have classified those companies based on the stock price range and then applied our model to identify which algorithm suites most for a particular range of stock price. Comparative forecasting results of all algorithms in diverse price ranges have been presented to show the usefulness of this Predictive Meta Model


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yanpeng Zhang ◽  
Hua Qu ◽  
Weipeng Wang ◽  
Jihong Zhao

Time series forecasting models based on a linear relationship model show great performance. However, these models cannot handle the the data that are incomplete, imprecise, and ambiguous as the interval-based fuzzy time series models since the process of fuzzification is abandoned. This article proposes a novel fuzzy time series forecasting model based on multiple linear regression and time series clustering for forecasting market prices. The proposed model employs a preprocessing to transform the set of fuzzy high-order time series into a set of high-order time series, with synthetic minority oversampling technique. After that, a high-order time series clustering algorithm based on the multiple linear regression model is proposed to cluster dataset of fuzzy time series and to build the linear regression model for each cluster. Then, we make forecasting by calculating the weighted sum of linear regression models’ results. Also, a learning algorithm is proposed to train the whole model, which applies artificial neural network to learn the weights of linear models. The interval-based fuzzification ensures the capability to deal with the uncertainties, and linear model and artificial neural network enable the proposed model to learn both of linear and nonlinear characteristics. The experiment results show that the proposed model improves the average forecasting accuracy rate and is more suitable for dealing with these uncertainties.


2011 ◽  
Vol 18 (3) ◽  
pp. 277-308 ◽  
Author(s):  
Jan Annaert ◽  
Frans Buelens ◽  
Ludo Cuyvers ◽  
Marc De Ceuster ◽  
Marc Deloof ◽  
...  

In this article, we calculate a market-weighted return index for the 20 largest stocks listed on the Brussels Stock Exchange over the period 1833–2005, based on a new, unique and high-quality database. We find that this index captures the most important stylised facts of the value-weighted return of all shares listed on the Brussels Stock Exchange in this period. Our results support the empirical practice of concentrating on just the largest stocks. The indices we construct are based on one of the longest Belgian time series available. The indices take into account the exact dividends, the timing of the dividend cash flows and all capital operations. We are therefore able to decompose total returns into capital gain returns and dividend returns, which is not possible with most historical return series. We show that, to construct a credible return index, it is crucial to fully take into account dividends.


2019 ◽  
Vol 18 (06) ◽  
pp. 1967-1987
Author(s):  
Tai-Liang Chen ◽  
Ching-Hsue Cheng ◽  
Jing-Wei Liu

Stock forecasting technology is always a popular research topic because accurate forecasts allow profitable investments and social change. We postulate, based on past research, three major drawbacks for using time series in forecasting stock prices as follows: (1) a simple time-series model provides insufficient explanations for inner and external interactions of the stock market; (2) the variables of a time series behave in strict stationarity, but economic time-series are usually in a nonlinear or nonstationary state and (3) the forecasting factors of multivariable time-series are selected based on researcher’s knowledge, and such a method is a “subjective” way to construct a forecasting model. Therefore, this paper proposes a causal time-series model to select forecasting factors and builds a machine learning forecast model. The “Granger causality test” is utilized first in the proposed model to select the critical factors from technical indicators and market indexes; next, a “multilayer perceptron regression (MLPR)” is employed to construct a forecasting model. This paper collected financial data over a 13-year period (from 2003 to 2015) of the Taiwan stock index (TAIEX) as experimental datasets. Furthermore, the root mean square error (RMSE) was used as a performance indicator, and we use five forecasting models as comparison models. The results reveal that the proposed model outperforms the comparison models in forecasting accuracy and performs well for three key indicators. LAG1, S&P500 and DJIA, are critical factors in all 11 of our time sliding windows (T1–T11). We offer these results to investors to aid in their decision-making processes.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 281
Author(s):  
Nazirah Ramli ◽  
Siti Musleha Ab Mutalib ◽  
Daud Mohamad

This paper proposes an enhanced fuzzy time series (FTS) prediction model that can keep some information under a various level of confidence throughout the forecasting procedure. The forecasting accuracy is developed based on the similarity between the fuzzified historical data and the fuzzy forecast values. No defuzzification process involves in the proposed method. The frequency density method is used to partition the interval, and the area and height type of similarity measure is utilized to get the forecasting accuracy. The proposed model is applied in a numerical example of the unemployment rate in Malaysia. The results show that on average 96.9% of the forecast values are similar to the historical data. The forecasting error based on the distance of the similarity measure is 0.031. The forecasting accuracy can be obtained directly from the forecast values of trapezoidal fuzzy numbers form without experiencing the defuzzification procedure.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Wuyang Cheng ◽  
Jun Wang

We develop a random financial time series model of stock market by one of statistical physics systems, the stochastic contact interacting system. Contact process is a continuous time Markov process; one interpretation of this model is as a model for the spread of an infection, where the epidemic spreading mimics the interplay of local infections and recovery of individuals. From this financial model, we study the statistical behaviors of return time series, and the corresponding behaviors of returns for Shanghai Stock Exchange Composite Index (SSECI) and Hang Seng Index (HSI) are also comparatively studied. Further, we investigate the Zipf distribution and multifractal phenomenon of returns and price changes. Zipf analysis and MF-DFA analysis are applied to investigate the natures of fluctuations for the stock market.


Sign in / Sign up

Export Citation Format

Share Document