scholarly journals Multiple Lump Novel and Accurate Analytical and Numerical Solutions of the Three-Dimensional Potential Yu–Toda–Sasa–Fukuyama Equation

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2081
Author(s):  
Mostafa M. A. Khater ◽  
Dumitru Baleanu ◽  
Mohamed S. Mohamed

The accuracy of novel lump solutions of the potential form of the three–dimensional potential Yu–Toda–Sasa–Fukuyama (3-Dp-YTSF) equation is investigated. These solutions are obtained by employing the extended simplest equation (ESE) and modified Kudryashov (MKud) schemes to explore its lump and breather wave solutions that characterizes the dynamics of solitons and nonlinear waves in weakly dispersive media, plasma physics, and fluid dynamics. The accuracy of the obtained analytical solutions is investigated through the perspective of numerical and semi-analytical strategies (septic B-spline (SBS) and variational iteration (VI) techniques). Additionally, matching the analytical and numerical solutions is represented along with some distinct types of sketches. The superiority of the MKud is showed as the fourth research paper in our series that has been beginning by Mostafa M. A. Khater and Carlo Cattani with the title “Accuracy of computational schemes”. The functioning of employed schemes appears their effectual and ability to apply to different nonlinear evolution equations.

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1473 ◽  
Author(s):  
Abdulghani Alharbi ◽  
Mohammed B. Almatrafi

Solutions such as symmetric, periodic, and solitary wave solutions play a significant role in the field of partial differential equations (PDEs), and they can be utilized to explain several phenomena in physics and engineering. Therefore, constructing such solutions is significantly essential. This article concentrates on employing the improved exp(−ϕ(η))-expansion approach and the method of lines on the variant Boussinesq system to establish its exact and numerical solutions. Novel solutions based on the solitary wave structures are obtained. We present a comprehensible comparison between the accomplished exact and numerical results to testify the accuracy of the used numerical technique. Some 3D and 2D diagrams are sketched for some solutions. We also investigate the L2 error and the CPU time of the used numerical method. The used mathematical tools can be comfortably invoked to handle more nonlinear evolution equations.


2020 ◽  
Vol 34 (30) ◽  
pp. 2050289
Author(s):  
Abdulghani R. Alharbi ◽  
M. B. Almatrafi ◽  
Aly R. Seadawy

The Kudryashov technique is employed to extract several classes of solitary wave solutions for the Joseph–Egri equation. The stability of the achieved solutions is tested. The numerical solution of this equation is also investigated. We also present the accuracy and the stability of the numerical schemes. Some two- and three-dimensional figures are shown to present the solutions on some specific domains. The used methods are found useful to be applied on other nonlinear evolution equations.


Sign in / Sign up

Export Citation Format

Share Document