scholarly journals Subtype Specificity of β-Toxin Tf1a from Tityus fasciolatus in Voltage Gated Sodium Channels

Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 339 ◽  
Author(s):  
Daniel Mata ◽  
Diogo Tibery ◽  
Leandro Campos ◽  
Thalita Camargos ◽  
Steve Peigneur ◽  
...  

Scorpion venoms are a complex mixture of components. Among them the most important are peptides, which presents the capacity to interact and modulate several ion channel subtypes, including voltage-gated sodium channels (NaV). Screening the activity of scorpion toxins on different subtypes of NaV reveals the scope of modulatory activity and, in most cases, low channel selectivity. Until now there are approximately 60 scorpion toxins experimentally assayed on NaV channels. However, the molecular bases of interaction between scorpion toxins and NaV channels are not fully elucidated. The activity description of new scorpion toxins is crucial to enhance the predictive strength of the structural–function correlations of these NaV modulatory molecules. In the present work a new scorpion toxin (Tf1a) was purified from Tityus fasciolatus venom by RP-HPLC, and characterized using electrophysiological experiments on different types of voltage-gated sodium channels. Tf1a was able to modify the normal function of NaV tested, showing to be a typical β-NaScTx. Tf1a also demonstrated an unusual capability to alter the kinetics of NaV1.5.

Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 626 ◽  
Author(s):  
Yashad Dongol ◽  
Fernanda Caldas Cardoso ◽  
Richard J Lewis

Voltage-gated sodium channels (NaVs) are a key determinant of neuronal signalling. Neurotoxins from diverse taxa that selectively activate or inhibit NaV channels have helped unravel the role of NaV channels in diseases, including chronic pain. Spider venoms contain the most diverse array of inhibitor cystine knot (ICK) toxins (knottins). This review provides an overview on how spider knottins modulate NaV channels and describes the structural features and molecular determinants that influence their affinity and subtype selectivity. Genetic and functional evidence support a major involvement of NaV subtypes in various chronic pain conditions. The exquisite inhibitory properties of spider knottins over key NaV subtypes make them the best lead molecules for the development of novel analgesics to treat chronic pain.


2017 ◽  
Vol 117 (4) ◽  
pp. 1690-1701 ◽  
Author(s):  
Dario I. Carrasco ◽  
Jacob A. Vincent ◽  
Timothy C. Cope

Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV1.1, predominantly in sensory terminals together with NaV1.6 and for NaV1.7, mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles. NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site involved in transduction or encoding of muscle stretch. We propose that NaVs contribute to multiple steps in sensory signaling by muscle spindles as it does in other types of slowly adapting sensory neurons.


2021 ◽  
Vol 22 (5) ◽  
pp. 2570
Author(s):  
Anne Virsolvy ◽  
Aurélie Fort ◽  
Lucie Erceau ◽  
Azzouz Charrabi ◽  
Maurice Hayot ◽  
...  

Arterial smooth muscle exhibits rhythmic oscillatory contractions called vasomotion and believed to be a protective mechanism against tissue hypoperfusion or hypoxia. Oscillations of vascular tone depend on voltage and follow oscillations of the membrane potential. Voltage-gated sodium channels (Nav), responsible for the initiation and propagation of action potentials in excitable cells, have also been evidenced both in animal and human vascular smooth muscle cells (SMCs). For example, they contribute to arterial contraction in rats, but their physiopathological relevance has not been established in human vessels. In the present study, we investigated the functional role of Nav in the human artery. Experiments were performed on human uterine arteries obtained after hysterectomy and on SMCs dissociated from these arteries. In SMCs, we recorded a tetrodotoxin (TTX)-sensitive and fast inactivating voltage-dependent INa current. Various Nav genes, encoding -subunit isoforms sensitive (Nav 1.2; 1.3; 1.7) and resistant (Nav 1.5) to TTX, were detected both in arterial tissue and in SMCs. Nav channels immunostaining showed uniform distribution in SMCs and endothelial cells. On arterial tissue, we recorded variations of isometric tension, ex vivo, in response to various agonists and antagonists. In arterial rings placed under hypoxic conditions, the depolarizing agent KCl and veratridine, a specific Nav channels agonist, both induced a sustained contraction overlaid with rhythmic oscillations of tension. After suppression of sympathetic control either by blocking the release of catecholamine or by antagonizing the target adrenergic response, rhythmic activity persisted while the sustained contraction was abolished. This rhythmic activity of the arteries was suppressed by TTX but, in contrast, only attenuated by antagonists of calcium channels, Na+/Ca2+ exchanger, Na+/K+-ATPase and the cardiac Nav channel. These results highlight the role of Nav as a novel key element in the vasomotion of human arteries. Hypoxia promotes activation of Nav channels involved in the initiation of rhythmic oscillatory contractile activity.


2011 ◽  
Vol 61 (1-2) ◽  
pp. 105-111 ◽  
Author(s):  
Enrico Leipold ◽  
René Markgraf ◽  
Alesia Miloslavina ◽  
Michael Kijas ◽  
Jana Schirmeyer ◽  
...  

2011 ◽  
Vol 286 (38) ◽  
pp. 33641-33651 ◽  
Author(s):  
Joel Z. Zhang ◽  
Vladimir Yarov-Yarovoy ◽  
Todd Scheuer ◽  
Izhar Karbat ◽  
Lior Cohen ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 848-855 ◽  
Author(s):  
Yijia Xu ◽  
Junxin Sun ◽  
Hongyu Liu ◽  
Jianfang Sun ◽  
Yue Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document