scholarly journals Development of a Sensitive and Reliable UHPLC-MS/MS Method for the Determination of Multiple Urinary Biomarkers of Mycotoxin Exposure

Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 193 ◽  
Author(s):  
Zhezhe Liu ◽  
Xiaoxue Zhao ◽  
Libiao Wu ◽  
Shuang Zhou ◽  
Zhiyong Gong ◽  
...  

A variety of mycotoxins from different sources frequently contaminate farm products, presenting a potential toxicological concern for animals and human. Mycotoxin exposure has been the focus of attention for governments around the world. To date, biomarkers are used to monitor mycotoxin exposure and promote new understanding of their role in chronic diseases. The goal of this research was to develop and validate a sensitive UHPLC-MS/MS method using isotopically-labeled internal standards suitable for accurate determination of 18 mycotoxin biomarkers, including fumonisins, ochratoxins, Alternaria and emerging Fusarium mycotoxins (fumonisin B1, B2, and B3, hydrolyzed fumonisin B1 and B2, ochratoxin A, B, and alpha, alternariol, alternariol monomethyl ether, altenuene, tentoxin, tenuazonic acid, beauvericin, enniatin A, A1, B, and B1) in human urine. After enzymatic digestion with β-glucuronidase, human urine samples were cleaned up using HLB solid phase extraction cartridges prior to instrument analysis. The multi-mycotoxin and analyte-specific method was validated in-house, providing satisfactory results. The method provided good linearity in the tested concentration range (from LOQ up to 25–500 ng/mL for different analytes), with R2 from 0.997 to 0.999. The limits of quantitation varied from 0.0002 to 0.5 ng/mL for all analytes in urine. The recoveries for spiked samples were between 74.0% and 133%, with intra-day precision of 0.5%–8.7% and inter-day precision of 2.4%–13.4%. This method was applied to 60 urine samples collected from healthy volunteers in Beijing, and 10 biomarkers were found. At least one biomarker was found in all but one of the samples. The high sensitivity and accuracy of this method make it practical for human biomonitoring and mycotoxin exposure assessment.

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 42
Author(s):  
Noelia Pallarés ◽  
Dionisia Carballo ◽  
Emilia Ferrer ◽  
Yelko Rodríguez-Carrasco ◽  
Houda Berrada

Human biomonitoring constitutes a suitable tool to assess exposure to toxins overcoming the disadvantages of traditional methods. Urine constitutes an accessible biological matrix in biomonitoring studies. Mycotoxins are secondary metabolites produced naturally by filamentous fungi that produce a wide range of adverse health effects. Thus, the determination of urinary mycotoxin levels is a useful tool for assessing the individual exposure to these food contaminants. In this study, a suitable methodology has been developed to evaluate the presence of aflatoxin B2 (AFB2), aflatoxin (AFG2), ochratoxin A (OTA), ochratoxin B (OTB), zearalenone (ZEA), and α-zearalenol (α-ZOL) in urine samples as exposure biomarkers. For this purpose, different extraction procedures, namely, the Solid Phase Extraction (SPE); Dispersive Liquid–Liquid Microextraction (DLLME); and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were assessed, followed by Liquid Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry with Electrospray Ionization (LC-ESI-QTOF-MS) determination. Then, the proposed methodology was applied to determine mycotoxin concentrations in 56 human urine samples from volunteers and to estimate the potential risk of exposure. The results obtained revealed that 55% of human urine samples analyzed resulted positive for at least one mycotoxin. Among all studied mycotoxins, only AFB2, AFG2, and OTB were detected with incidences of 32, 41, and 9%, respectively, and levels in the range from <LOQ to 69.42 µg/L. Risk assessment revealed a potential health risk, obtaining MoE values < 10,000. However, it should be highlighted that few samples were contaminated, and that more data about mycotoxin excretion rates and their BMDL10 values are needed for a more accurate risk assessment.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 418
Author(s):  
Jessica Schmidt ◽  
Benedikt Cramer ◽  
Paul C. Turner ◽  
Rebecca J. Stoltzfus ◽  
Jean H. Humphrey ◽  
...  

In the course of assessing the human exposure to mycotoxins, biomarker-based approaches have proven to be important tools. Low concentration levels, complex matrix compositions, structurally diverse analytes, and the large size of sample cohorts are the main challenges of analytical procedures. For that reason, an online solid phase extraction-ultra high-performance liquid chromatography-tandem mass spectrometry (online SPE-UHPLC-MS/MS) method was developed, allowing for the sensitive, robust, and rapid analysis of 11 relevant mycotoxins and mycotoxin metabolites in human urine. The included spectrum of analytes comprises aflatoxin M1 (AFM1), altenuene (ALT), alternariol monomethyl ether (AME), alternariol (AOH), citrinin (CIT) and its metabolite dihydrocitrinone (DH-CIT), fumonisin B1 (FB1), ochratoxin A (OTA), and zearalenone (ZEN) as well as α- and β-zearalenol (α- and β-ZEL). Reliable quantitation was achieved by means of stable isotope dilution, except for ALT, AME and AOH using matrix calibrations. The evaluation of method performance displayed low limits of detection in the range of pg/mL urine, satisfactory apparent recovery rates as well as high accuracy and precision during intra- and interday repeatability. Within the analysis of Zimbabwean urine samples (n = 50), the applicability of the newly developed method was shown. In addition to FB1 being quantifiable in all analyzed samples, six other mycotoxin biomarkers were detected. Compared to the occurrence rates obtained after analyzing the same sample set using an established dilute and shoot (DaS) approach, a considerably higher number of positive samples was observed when applying the online SPE method. Owing to the increased sensitivity, less need of sample handling, and low time effort, the herein presented online SPE approach provides a valuable contribution to human biomonitoring of mycotoxin exposure.


2016 ◽  
Vol 8 (20) ◽  
pp. 4075-4085 ◽  
Author(s):  
Ricky Cássio Santos da Silva ◽  
Valdir Mano ◽  
Arnaldo César Pereira ◽  
Eduardo Costa de Figueiredo ◽  
Keyller Bastos Borges

A simple and selective sample preparation technique employing PT-MIP-μ-SPE coupled to HPLC/DAD was developed for the determination of the cis-enantiomers of ketoconazole in human urine samples.


2013 ◽  
Vol 11 (12) ◽  
pp. 2076-2087 ◽  
Author(s):  
Sylwia Magiera ◽  
Weronika Adolf ◽  
Irena Baranowska

AbstractA sensitive and specific high performance liquid chromatography coupled with fluorescent detection (HPLC-FL) and tandem mass spectrometry detection (HPLC-MS/MS) methods for separation and determination of carvedilol (CAR) enantiomers and 5′-hydroxyphenyl carvedilol (5′-HCAR) enantiomers has been developed and validated. The analysed compounds were extracted from human urine by solid phase extraction. Good enantioseparation of the studied enantiomers was achieved on CHIRALCEL® OD-RH column using 0.05% trifluoroacetic acid and 0.05% diethylamine in water and acetonitrile in a gradient elution. The mass spectrometric data were acquired using the multiple reaction monitoring mode by positive electrospray ionisation. The method was validated over the concentration range from 25.0 ng mL−1 to 200 ng mL−1 for the analysed compounds. The limit of quantification varied from 14.2 ng mL−1 to 24.2 ng mL−1. Both the repeatability and inter-day precisions were below 10.0%, and the accuracy varied from −13.2% to 3.77%. The extraction recoveries ranged from 79.2% to 108%. The present paper reports the method for the simultaneous determination of CAR enantiomers and their metabolite enantiomers (5′-HCAR) in human urine samples. This newly developed method was successfully used to analyse the aforementioned analytes in human urine samples obtained from patients suffering from cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document