scholarly journals The Geometrical Trinity of Gravity

Universe ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. 173 ◽  
Author(s):  
Jose Beltrán Jiménez ◽  
Lavinia Heisenberg ◽  
Tomi Koivisto

The geometrical nature of gravity emerges from the universality dictated by the equivalence principle. In the usual formulation of General Relativity, the geometrisation of the gravitational interaction is performed in terms of the spacetime curvature, which is now the standard interpretation of gravity. However, this is not the only possibility. In these notes, we discuss two alternative, though equivalent, formulations of General Relativity in flat spacetimes, in which gravity is fully ascribed either to torsion or to non-metricity, thus putting forward the existence of three seemingly unrelated representations of the same underlying theory. Based on these three alternative formulations of General Relativity, we then discuss some extensions.

2006 ◽  
Vol 15 (12) ◽  
pp. 2249-2255 ◽  
Author(s):  
ANTONIO ACCIOLY ◽  
RUBEN ALDROVANDI ◽  
RICARDO PASZKO

It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity — a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle — is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle.


2015 ◽  
Vol 8 (1) ◽  
pp. 1976-1981
Author(s):  
Casey McMahon

The principle postulate of general relativity appears to be that curved space or curved spacetime is gravitational, in that mass curves the spacetime around it, and that this curved spacetime acts on mass in a manner we call gravity. Here, I use the theory of special relativity to show that curved spacetime can be non-gravitational, by showing that curve-linear space or curved spacetime can be observed without exerting a gravitational force on mass to induce motion- as well as showing gravity can be observed without spacetime curvature. This is done using the principles of special relativity in accordance with Einstein to satisfy the reader, using a gravitational equivalence model. Curved spacetime may appear to affect the apparent relative position and dimensions of a mass, as well as the relative time experienced by a mass, but it does not exert gravitational force (gravity) on mass. Thus, this paper explains why there appears to be more gravity in the universe than mass to account for it, because gravity is not the resultant of the curvature of spacetime on mass, thus the “dark matter” and “dark energy” we are looking for to explain this excess gravity doesn’t exist.


Author(s):  
David M. Wittman

The equivalence principle is an important thinking tool to bootstrap our thinking from the inertial coordinate systems of special relativity to the more complex coordinate systems that must be used in the presence of gravity (general relativity). The equivalence principle posits that at a given event gravity accelerates everything equally, so gravity is equivalent to an accelerating coordinate system.This conjecture is well supported by precise experiments, so we explore the consequences in depth: gravity curves the trajectory of light as it does other projectiles; the effects of gravity disappear in a freely falling laboratory; and gravitymakes time runmore slowly in the basement than in the attic—a gravitational form of time dilation. We show how this is observable via gravitational redshift. Subsequent chapters will build on this to show how the spacetime metric varies with location.


2009 ◽  
Vol 5 (S261) ◽  
pp. 198-199
Author(s):  
Clifford M. Will

AbstractWe review the experimental evidence for Einstein's general relativity. A variety of high precision null experiments confirm the Einstein Equivalence Principle, which underlies the concept that gravitation is synonymous with spacetime geometry, and must be described by a metric theory. Solar system experiments that test the weak-field, post-Newtonian limit of metric theories strongly favor general relativity. Binary pulsars test gravitational-wave damping and aspects of strong-field general relativity. During the coming decades, tests of general relativity in new regimes may be possible. Laser interferometric gravitational-wave observatories on Earth and in space may provide new tests via precise measurements of the properties of gravitational waves. Future efforts using X-ray, infrared, gamma-ray and gravitational-wave astronomy may one day test general relativity in the strong-field regime near black holes and neutron stars.


Author(s):  
Andreas Boenke

The intention of this paper is to point out a remarkable hitherto unknown effect of General Relativity. Starting from fundamental physical principles and phenomena arising from General Relativity, it is demonstrated by a simple Gedankenexperiment that a gravitational lens enhances not only the light intensity of a background object but also its gravitational field strength by the same factor. Thus, multiple images generated by a gravitational lens are not just optical illusions, they also have a gravitational effect at the location of the observer! The "Gravitationally Lensed Gravitation" (GLG) may help to better understand the rotation curves of galaxies since it leads to an enhancement of the gravitational interactions of the stars. Furthermore, it is revealed that besides a redshift of the light of far distant objects, the cosmic expansion also causes a corresponding weakening of their gravitational effects. The explanations are presented entirely without metric representation and tensor formalism. Instead, the behavior of light is used to indicate the effect of spacetime curvature. The gravitation is described by the field strength which is identical to the free fall acceleration. The new results thus obtained provide a reference for future numerical calculations based on the Einstein field equations.


Metaphysics ◽  
2020 ◽  
pp. 82-93
Author(s):  
V. G Krechet

In this article, within the framework of general relativity, the possible effect of the gravitational interaction of Dirac nonlinear spinor fields on the evolution of the Universe, on the formation of astrophysical objects and on the formation of the geometry of the local space-time of elementary particles with spin ħ / 2 is considered.


2020 ◽  
Author(s):  
Richmond Sam Quarm ◽  
Richmond Sam-Quarm ◽  
Mohamed Osman Elamin Busharads

In this study, we probed high school students’ understanding of Einstein’s theory of gravity by implementing an approach which mainly consists of two steps: firstly, exposing students to TEs describing the Equivalence Principle; secondly, applying the analogy of parallel lines on a curved surface with the path of two falling balls in a real gravitational field to help students deduce the idea of gravity as the spacetime curvature. A total of 12 high school students voluntarily participated in this study where data regarding their understanding were measured by means of an identical pen-and-paper test and interviews. Even though none of the students could explain what the Einstein’s version of gravity is in the pre-test, their responses in the post-test indicated that the approach we applied could help them understand the Einstein’s theory of gravity. Not only could they recall what the gravity is, most of them managed to provide related analogy they have learnt to explain their thoughts. Apart from its easily comprehensible steps, the study suggested that the approach is worth adopting to teach Einstein’s theory of gravity as it reflects the similar path ever taken by Einstein when starting to formulate his theory of gravity.


Sign in / Sign up

Export Citation Format

Share Document