scholarly journals Lomonosov GRB Catalogue: The First Experience of Prompt Emission Multi-Wavelength Observations

Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 375
Author(s):  
V. A. Sadovnichy ◽  
M. I. Panasyuk ◽  
S. I. Svertilov ◽  
V. M. Lipunov ◽  
V. V. Bogomolov ◽  
...  

This paper presents a catalogue of gamma-ray bursts (GRBs) that were detected by the instruments onboard the Lomonosov space observatory. The Lomonosov mission gave the first experience of not only multi-wavelength (from optical to gamma) observations of GRBs but also multi-messenger observations of extreme phenomena and GRBs. The detailed light curves and energy spectra of the detected GRBs are presented. The results of the prompt, early an afterglow optical observations of several GRBs are discussed.

Author(s):  
MICHEL BOËR

The prompt emission of gamma-ray burst sources is still the main means of detection, and a privilegied access to the souce dynamics. It is detected from radio to GeV energies, and its study is crucial for the overall understanding of the phenomenom. We present here a panorama of the rapid optical observations, and what can be infered from the data. We will discuss also the new instruments which are planned for the observation of the prompt and early afterglow at optical and infrared wavelengths, with spectral capabilities.


2019 ◽  
Vol 628 ◽  
pp. A59 ◽  
Author(s):  
G. Oganesyan ◽  
L. Nava ◽  
G. Ghirlanda ◽  
A. Melandri ◽  
A. Celotti

Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies ≳10 keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain because of the apparent inconsistency with synchrotron radiation, which is the most obvious candidate, and the resulting need for considering less straightforward scenarios. The inclusion of data down to soft X-rays (∼0.5 keV), which are available only in a small fraction of GRBs, has firmly established the common presence of a spectral break in the low-energy part of prompt spectra, and even more importantly, the consistency of the overall spectral shape with synchrotron radiation in the moderately fast-cooling regime, the low-energy break being identified with the cooling frequency. In this work we further extend the range of investigation down to the optical band. In particular, we test the synchrotron interpretation by directly fitting a theoretically derived synchrotron spectrum and making use of optical to gamma-ray data. Secondly, we test an alternative model that considers the presence of a black-body component at ∼keV energies, in addition to a non-thermal component that is responsible for the emission at the spectral peak (100 keV–1 MeV). We find that synchrotron radiation provides a good description of the broadband data, while models composed of a thermal and a non-thermal component require the introduction of a low-energy break in the non-thermal component in order to be consistent with optical observations. Motivated by the good quality of the synchrotron fits, we explore the physical parameter space of the emitting region. In a basic prompt emission scenario we find quite contrived solutions for the magnetic field strength (5 G < B′< 40 G) and for the location of the region where the radiation is produced (Rγ >  1016 cm). We discuss which assumptions of the basic model would need to be relaxed in order to achieve a more natural parameter space.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
C. G. Mundell ◽  
C. Guidorzi ◽  
I. A. Steele

We present a status report on the study of gamma-ray bursts (GRBs) in the era of rapid followup using the world's largest robotic optical telescopes—the 2 m Liverpool and Faulkes telescopes. Within the context of key unsolved issues in GRB physics, we describe (1) our innovative software that allows real-time automatic analysis and interpretation of GRB light curves, (2) the novel instrumentation that allows unique types of observations (in particular, early time polarisation measurements), and (3) the key science questions and discoveries to which robotic observations are ideally suited, concluding with a summary of current understanding of GRB physics provided by combining rapid optical observations with simultaneous observations at other wavelengths.


Author(s):  
Tsvi Piran ◽  
Yi-Zhong Fan

Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.


1999 ◽  
Vol 520 (2) ◽  
pp. 666-679 ◽  
Author(s):  
Simon F. Portegies Zwart ◽  
Chang‐Hwan Lee ◽  
Hyun Kyu Lee

2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2012 ◽  
Vol 8 (S290) ◽  
pp. 263-264
Author(s):  
Liang Li ◽  
En-Wei Liang ◽  
He Gao ◽  
Bing Zhang

AbstractWell-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from literature. We identify possible emission components based on our empirical fits and present statistical analysis for these components. We find that the flares are related to prompt emission, suggesting that they could have the same origin in different episodes. The shallow decay segment is not correlated with prompt gamma-rays. It likely signals a long-lasting injected wind from GRB central engines. Early after onset peak is closely related with prompt emission. The ambient medium density profile is likely n ∝ r−1. No correlation between the late re-brightening bump and prompt gamma-rays or the onset bump is found. They may be from another jet component.


Author(s):  
Neil Gehrels

Since its launch on 20 November 2004, the Swift mission has been detecting approximately 100 gamma-ray bursts (GRBs) each year, and immediately (within approx. 90 s) starting simultaneous X-ray and UV/optical observations of the afterglow. It has already collected an impressive database, including prompt emission to higher sensitivities than BATSE, uniform monitoring of afterglows and a rapid follow-up by other observatories notified through the GCN. Advances in our understanding of short GRBs have been spectacular. The detection of X-ray afterglows has led to accurate localizations and the conclusion that short GRBs can occur in non-star-forming galaxies or regions, whereas long GRBs are strongly concentrated within the star-forming regions. This is consistent with the NS merger model. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at z ∼5–6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to a much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and the association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova.


2020 ◽  
Vol 492 (3) ◽  
pp. 3622-3630
Author(s):  
Lin Lan ◽  
Rui-Jingi Lu ◽  
Hou-Jun Lü ◽  
Jun Shen ◽  
Jared Rice ◽  
...  

ABSTRACT Short gamma-ray bursts (GRB) with extended emission (EE) that are composed of an initial short hard spike followed by a long-lasting EE are thought to comprise a sucategory of short GRBs. The narrow energy band available during the Swift era, combined with a lack of spectral information, prevented the discovery of the intrinsic properties of these events. In this paper, we perform a systematic search of short GRBs with EE using all available Fermi/GBM data. The search identified 26 GBM-detected short GRBs with EE that are similar to GRB 060614 observed by Swift/BAT. We focus on investigating the spectral and temporal properties of both the hard spike and the EE component of all 26 GRBs, and explore differences and possible correlations between them. We find that while the peak energy (Ep) of the hard spikes is slightly harder than that of the EE, their fluences are comparable. The harder Ep seems to correspond to a larger fluence and peak flux, with a large scatter for both the hard spike and the EE component. Moreover, the Ep of both the hard spike and the EE are compared with other short GRBs. Finally, we also compare the properties of GRB 170817A with those of short GRBs with EE and find no significant statistical differences between them. We find that GRB 170817A has the lowest Ep, probably because it is off-axis.


Sign in / Sign up

Export Citation Format

Share Document