scholarly journals Structural Fluidity of the Human Immunodeficiency Virus Rev Response Element

Viruses ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 86 ◽  
Author(s):  
Chringma Sherpa ◽  
Stuart F. J. Le Grice

Nucleocytoplasmic transport of unspliced and partially spliced human immunodeficiency virus (HIV) RNA is mediated in part by the Rev response element (RRE), a ~350 nt cis-acting element located in the envelope coding region of the viral genome. Understanding the interaction of the RRE with the viral Rev protein, cellular co-factors, and its therapeutic potential has been the subject of almost three decades of structural studies, throughout which a recurring discussion theme has been RRE topology, i.e., whether it comprises 4 or 5 stem-loops (SLs) and whether this has biological significance. Moreover, while in vitro mutagenesis allows the construction of 4 SL and 5 SL RRE conformers and testing of their roles in cell culture, it has not been immediately clear if such findings can be translated to a clinical setting. Herein, we review several articles demonstrating remarkable flexibility of the HIV-1 and HIV-2 RREs following initial observations that HIV-1 resistance to trans-dominant Rev therapy was founded in structural rearrangement of its RRE. These observations can be extended not only to cell culture studies demonstrating a growth advantage for the 5 SL RRE conformer but also to evolution in RRE topology in patient isolates. Finally, RRE conformational flexibility provides a target for therapeutic intervention, and we describe high throughput screening approaches to exploit this property.

2009 ◽  
Vol 90 (5) ◽  
pp. 1141-1147 ◽  
Author(s):  
Harriet C. T. Groom ◽  
Emma C. Anderson ◽  
John A. Dangerfield ◽  
Andrew M. L. Lever

Full-length human immunodeficiency virus type 1 (HIV-1) RNA acts as both mRNA, encoding Gag and Gag–Pol polyproteins, and genomic RNA. Translation of this RNA must be tightly controlled to allow sufficient protein synthesis prior to a switch to particle production. The viral protein Rev stimulates nuclear export of unspliced HIV-1 RNAs containing the Rev response element, but may also stimulate translation of these RNAs. We previously identified an additional Rev binding site in the 5′ untranslated region of the HIV-1 RNA. We show that Rev inhibits translation non-specifically at high concentrations and stimulates translation of HIV-1 RNAs at intermediate concentrations in vitro. Stimulation is dependent on the presence of the Rev binding site within the 5′ untranslated region and not on the Rev response element. In COS-1 cells, translation from an HIV-1 reporter is specifically increased by coexpression of Rev.


1991 ◽  
Vol 65 (4) ◽  
pp. 2131-2134 ◽  
Author(s):  
X J Huang ◽  
T J Hope ◽  
B L Bond ◽  
D McDonald ◽  
K Grahl ◽  
...  

2005 ◽  
Vol 49 (12) ◽  
pp. 5185-5188 ◽  
Author(s):  
Sofiya Micheva-Viteva ◽  
Annmarie L. Pacchia ◽  
Yacov Ron ◽  
Stuart W. Peltz ◽  
Joseph P. Dougherty

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is not eliminated from patients even after years of antiretroviral therapy, apparently due to the presence of latently infected cells. Here we describe the development of a cell-based system of latency that can be used for high-throughput screening aimed at novel drug discovery to eradicate HIV-1 infection.


2003 ◽  
Vol 47 (2) ◽  
pp. 501-508 ◽  
Author(s):  
Martin E. Adelson ◽  
Annmarie L. Pacchia ◽  
Malvika Kaul ◽  
Robert F. Rando ◽  
Yacov Ron ◽  
...  

ABSTRACT The emergence of human immunodeficiency virus type 1 (HIV-1) strains resistant to highly active antiretroviral therapy necessitates continued drug discovery for the treatment of HIV-1 infection. Most current drug discovery strategies focus upon a single aspect of HIV-1 replication. A virus-cell-based assay, which can be adapted to high-throughput screening, would allow the screening of multiple targets simultaneously. HIV-1-based vector systems mimic the HIV-1 life cycle without yielding replication-competent virus, making them potentially important tools for the development of safe, wide-ranging, rapid, and cost-effective assays amenable to high-throughput screening. Since replication of vector virus is typically restricted to a single cycle, a crucial question is whether such an assay provides the needed sensitivity to detect potential HIV-1 inhibitors. With a stable, inducible vector virus-producing cell line, the inhibitory effects of four reverse transcriptase inhibitors (zidovudine, stavudine, lamivudine, and didanosine) and one protease inhibitor (indinavir) were assessed. It was found that HIV-1 vector virus titer was inhibited in a single cycle of replication up to 300-fold without affecting cell viability, indicating that the assay provides the necessary sensitivity for identifying antiviral molecules. Thus, it seems likely that HIV-1-derived vector systems can be utilized in a novel fashion to facilitate the development of a safe, efficient method for screening compound libraries for anti-HIV-1 activity.


2015 ◽  
Vol 89 (23) ◽  
pp. 12058-12069 ◽  
Author(s):  
Shewit S. Tekeste ◽  
Thomas A. Wilkinson ◽  
Ethan M. Weiner ◽  
Xiaowen Xu ◽  
Jennifer T. Miller ◽  
...  

ABSTRACTHuman immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively.In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle.IMPORTANCETo establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.


1998 ◽  
Vol 72 (4) ◽  
pp. 2935-2944 ◽  
Author(s):  
Sarah L. Thomas ◽  
Martin Oft ◽  
Herbert Jaksche ◽  
Georg Casari ◽  
Peter Heger ◽  
...  

ABSTRACT The expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the action of the viraltrans-regulatory protein Rev. Rev is a nuclear shuttle protein that directly binds to its cis-acting Rev response element (RRE) RNA target sequence. Subsequent oligomerization of Rev monomers on the RRE and interaction of Rev with a cellular cofactor(s) result in the cytoplasmic accumulation of RRE-containing viral mRNAs. Moreover, Rev by itself is exported from the nucleus to the cytoplasm. Although it has been demonstrated that Rev multimerization is critically required for Rev activity and hence for HIV-1 replication, the number of Rev monomers required to form atrans-activation-competent complex on the RRE is unknown. Here we report a systematic analysis of the putative multimerization domains within the Rev trans-activator protein. We identify the amino acid residues which are part of the proposed single hydrophobic surface patch in the Rev amino terminus that mediates intermolecular interactions. Furthermore, we show that the expression of a multimerization-deficient Rev mutant blocks HIV-1 replication in a trans-dominant (dominant-negative) fashion.


Sign in / Sign up

Export Citation Format

Share Document