scholarly journals Developing a Stabilizing Formulation of a Live Chimeric Dengue Virus Vaccine Dry Coated on a High-Density Microarray Patch

Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1301
Author(s):  
Jovin J. Y. Choo ◽  
Christopher L. D. McMillan ◽  
Germain J. P. Fernando ◽  
Roy A. Hall ◽  
Paul R. Young ◽  
...  

Alternative delivery systems such as the high-density microarray patch (HD-MAP) are being widely explored due to the variety of benefits they offer over traditional vaccine delivery methods. As vaccines are dry coated onto the HD-MAP, there is a need to ensure the stability of the vaccine in a solid state upon dry down. Other challenges faced are the structural stability during storage as a dried vaccine and during reconstitution upon application into the skin. Using a novel live chimeric virus vaccine candidate, BinJ/DENV2-prME, we explored a panel of pharmaceutical excipients to mitigate vaccine loss during the drying and storage process. This screening identified human serum albumin (HSA) as the lead stabilizing excipient. When bDENV2-coated HD-MAPs were stored at 4 °C for a month, we found complete retention of vaccine potency as assessed by the generation of potent virus-neutralizing antibody responses in mice. We also demonstrated that HD-MAP wear time did not influence vaccine deposition into the skin or the corresponding immunological outcomes. The final candidate formulation with HSA maintained ~100% percentage recovery after 6 months of storage at 4 °C.

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jovin J. Y. Choo ◽  
Laura J. Vet ◽  
Christopher L. D. McMillan ◽  
Jessica J. Harrison ◽  
Connor A. P. Scott ◽  
...  

AbstractDengue viruses (DENV) cause an estimated 390 million infections globally. With no dengue-specific therapeutic treatment currently available, vaccination is the most promising strategy for its control. A wide range of DENV vaccines are in development, with one having already been licensed, albeit with limited distribution. We investigated the immunogenicity and protective efficacy of a chimeric virus vaccine candidate based on the insect-specific flavivirus, Binjari virus (BinJV), displaying the structural prM/E proteins of DENV (BinJ/DENV2-prME). In this study, we immunized AG129 mice with BinJ/DENV2-prME via a needle-free, high-density microarray patch (HD-MAP) delivery system. Immunization with a single, 1 µg dose of BinJ/DENV2-prME delivered via the HD-MAPs resulted in enhanced kinetics of neutralizing antibody induction when compared to needle delivery and complete protection against mortality upon virus challenge in the AG129 DENV mouse model.


1964 ◽  
Vol 11 (01) ◽  
pp. 075-084 ◽  
Author(s):  
Daniel L Kline ◽  
Jacob B Fishman ◽  

Summary1. Lysine increased the solubility, decreased the SK requirement and increased the stability of plasmin prepared from purified plasminogen by SK activation.2. A procedure is presented for the rapid and quantitative conversion of plasminogen to plasmin and storage of the plasmin in stable form at neutral pH as a lyophilized powder.3. Approximately 10% for the plasminogen molecule was split off during its activation. No carbohydrate was lost.4. The plasmin isolated was homogeneous in the ultracentrifuge at pH 2.5 and was quantitatively convertible to plasminogen activator by the addition of SK.


2019 ◽  
Vol 1 (2) ◽  
pp. 25-30
Author(s):  
Ratih Yuniastri

Instant seasoning is made by mixing several ingredients and mashing it according to the desired composition. What is offered spices to enhance the flavor and aroma of these herbs. “Soto Madura” needs to be considered to determine the proper packaging and storage process. The spices are then made an analysis of the nutritional content of the spices. The spices were made repeatedly as many 3 times so the repeat data obtained. The analysis carried out includes proximate analysis, analysis of fat damage, and microbilogical content of herbs. The results of the analysis showed the instant seasoning “Soto Madura” contained water of 7,42±0,066%; ash by 1,18±0,056%; protein of 59,04±0,085%; fat 7,77±0,152%; carbohydrates 25,46±0,531%; acid number 0,507±0,035 mg/g; peroxide rate 4,063±0,066 Meg/1000g; free fat (FFA) 0,22±0,036%. For microbiological content, the content of microorganisms in the spices was 1,11x108 colonies; mold 7,9x106 colonies; and coliforn 8,6x106 colonies.


2018 ◽  
Vol 50 (1) ◽  
Author(s):  
Leonardo André Lange ◽  
Caroline Galgowski ◽  
Anna Cecília Roncalio ◽  
Fabiana Sehnem ◽  
Grabriela Borgmann ◽  
...  

1989 ◽  
Vol 35 (10) ◽  
pp. 972-974 ◽  
Author(s):  
Alain Lamarre ◽  
Pierre J. Talbot

The stability of human coronavirus 229E infectivity was maximum at pH 6.0 when incubated at either 4 or 33 °C. However, the influence of pH was more pronounced at 33 °C. Viral infectivity was completely lost after a 14-day incubation period at 22, 33, or 37 °C but remained relatively constant at 4 °C for the same length of time. Finally, the infectious titer did not show any significant reduction when subjected to 25 cycles of thawing and freezing. These studies will contribute to optimize virus growth and storage conditions, which will facilitate the molecular characterization of this important pathogen.Key words: coronavirus, pH, temperature, infectivity, human coronavirus.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1029
Author(s):  
Francesca Selmin ◽  
Umberto M. Musazzi ◽  
Silvia Franzè ◽  
Edoardo Scarpa ◽  
Loris Rizzello ◽  
...  

Moving towards a real mass vaccination in the context of COVID-19, healthcare professionals are required to face some criticisms due to limited data on the stability of a mRNA-based vaccine (Pfizer-BioNTech COVID-19 Vaccine in the US or Comirnaty in EU) as a dose in a 1 mL-syringe. The stability of the lipid nanoparticles and the encapsulated mRNA was evaluated in a “real-life” scenario. Specifically, we investigated the effects of different storing materials (e.g., syringes vs. glass vials), as well as of temperature and mechanical stress on nucleic acid integrity, number, and particle size distribution of lipid nanoparticles. After 5 h in the syringe, lipid nanoparticles maintained the regular round shape, and the hydrodynamic diameter ranged between 80 and 100 nm with a relatively narrow polydispersity (<0.2). Samples were stable independently of syringe materials and storage conditions. Only strong mechanical stress (e.g., shaking) caused massive aggregation of lipid nanoparticles and mRNA degradation. These proof-of-concept experiments support the hypothesis that vaccine doses can be safely prepared in a dedicated area using an aseptic technique and transferred without affecting their stability.


2011 ◽  
Vol 03 (01n02) ◽  
pp. 91-107 ◽  
Author(s):  
JÜRGEN LEOPOLD ◽  
KATRIN HELLER ◽  
ARNDT MEYER ◽  
REINER WOHLGEMUTH

The stability of coating-substrate systems influences the chip formation and the surface integrity of the new generated workpiece surface, too. Using finite element (FE) simulation, deformations, strains and stresses in coated tools, caused by external and internal loads, can be computed on a microscopic scale. Since both, the whole macroscopic tool (in mm-scale) and the microscopic coating layers (in μm-scale up to nm-scale) must be included in the same geometrical simulation model, graded high-resolution FE meshes must be used. Nevertheless, the number of nodes in the 3D computational FE grid reaches some millions, leading to large computational time and storage requirements. For this reason, an advanced adaptive finite element (AAFEM) software has been developed and used for the simulation.


2021 ◽  
Vol 13 (6) ◽  
pp. 3458
Author(s):  
Mikhail Chester ◽  
Mounir El Asmar ◽  
Samantha Hayes ◽  
Cheryl Desha

As climate change increases the frequency and intensity of disasters and associated infrastructure damage, Alternative Project Delivery Methods are well positioned to enable innovative contracting and partnering methods for designing and delivering adaptation solutions that are more time- and cost-effective. However, where conventional “build-back-as-before” post-disaster reconstruction occurs, communities remain vulnerable to future disasters of similar or greater magnitude. In this conceptual paper, we draw on a variety of literature and emergent practices to present how such alternative delivery methods of reconstruction projects can systematically integrate “build-back-better” and introduce more resilient infrastructure outcomes. Considering existing knowledge regarding infrastructure resilience, post-disaster reconstruction and project delivery methods, we consider the resilience regimes of rebound, robustness, graceful extensibility, and sustained adaptability to present the potential for alternative project delivery methods to improve the agility and flexibility of infrastructure against future climate-related and other hazards. We discuss the criticality of continued pursuit of stakeholder engagement to support further improvements to project delivery methods, enabling new opportunities for engaging with a broader set of stakeholders, and for stakeholders to contribute new knowledge and insights to the design process. We conclude the significant potential for such methods to enable resilient infrastructure outcomes, through prioritizing resilience alongside time and cost. We also present a visual schematic in the form of a framework for enabling post-disaster infrastructure delivery for resilience outcomes, across different scales and timeframes of reconstruction. The findings have immediate implications for agencies managing disaster recovery efforts, offering decision-support for improving the adaptive capacity of infrastructure, the services they deliver, and capacities of the communities that rely on them.


2012 ◽  
Vol 32 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Tatiane Regina Albarici ◽  
José Dalton Cruz Pessoa

This study assesses the storage temperature effect on the anthocyanins of pasteurized and unpasteurized açaí pulp. The data was obtained using a pasteurized and lyophilized pulp (PLP) to evaluate the temperature effect (0, 25, and 40 °C). Part of non-pasteurized frozen pulp (NPP) was pasteurized (NPP-P) at 90 °C for 30 seconds; both pulps were stored at 40 °C. The anthocyanin content reduction in the drink was evaluated from the half-life time (t1/2), activation energy (Ea), temperature quotient (Q10), and the reaction rate constant (k). The t1/2 of the PLP anthocyanins stored at 40 °C was 1.8 times less than that stored at 25 °C and 15 times less than that stored at 0 °C; therefore, the higher temperatures decreased the stability of anthocyanins. The pasteurization increased the t1/2 by 6.6 times (10.14 hours for NPP and 67.28 hours for NPP-P). The anthocyanin degradation on NPP-P followed a first order kinetic, while NPP followed a second order kinetic; thus it can be said that the pasteurization process can improve the preservation of anthocyanins in the pulp.


Sign in / Sign up

Export Citation Format

Share Document