scholarly journals Water–Energy Nexus for Multi-Criteria Decision Making in Water Resource Management: A Case Study of Choshui River Basin in Taiwan

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1740 ◽  
Author(s):  
Mengshan Lee ◽  
Chia-Yii Yu ◽  
Pen-Chi Chiang ◽  
Chia-Hung Hou

The Choshui river basin, the mother river in Taiwan, suffers from severe water shortage from extensive water use in irrigation as well as land subsidence from over-pumping of groundwater. To address these challenges, several water-related strategies and actions, including enhancement of water-use efficiency, development of alternative water sources, and improvement in effective water management, were proposed in this study to support sustainable water resource management in the watershed. Management of water resources in Taiwan is expected to confront not only freshwater resource but also energy source constraints. Multi-criteria decision analysis (MCDA), an approach for ranking overall performances of decision options, was then used to prioritize the water resource management strategies. The analysis considered economic (economic feasibility) and environmental (stability from the influence of climate change) criteria in the context of water–energy nexus (water supply/conservation potential and systemic energy efficiency). Our results indicated that, while economic feasibility was considered as the most important factor in implementation of the practices, improvement in groundwater pumping control and management was ranked as a high-priority water resource management action, followed by initiating water conservation programs for residential sector and reducing leakage rate for agricultural irrigation canals. The results from this study are expected to provide direction for future decision making in water resource management.

2020 ◽  
Vol 15 (3) ◽  
pp. 312-323
Author(s):  
Akira Kodaka ◽  
Akiyuki Kawasaki ◽  
Naruhiko Shirai ◽  
Ralph Allen Acierto ◽  
Win Win Zin ◽  
...  

Understanding of system requirements that satisfy end users’ needs is fundamental of system development, yet challenging when end users are unable to address their needs explicitly. Although a number of scholars have been designing and applying requirement elicitation techniques, there is a research gap in Spatial Decision Support System (SDSS) with Web-based Geographical Information System (Web-GIS) in water resource management for disaster risk reduction. The gap addresses especially design elicitation techniques and their performances 1) to understand data types used for decision making, 2) set timing for sharing the data to accomplish end users’ tasks, and 3) compile the data to be represented so as to facilitate end users’ decision making. This study therefore designed a requirement elicitation technique by advancing User Story Mapping (USM) and validated through a workshop using mock-up system interface with potential end users who are in charge of water resource management in Myanmar’s Bago River Basin. Through the research it could be validated that the user stories-based approach enabled end users to decompose their operation activities into tasks. It also allowed them to link to necessary data with visual image for facilitating their task accomplishments and decision making for water resource management. It was revealed that the benefits of using the designed approach are not only just to summarize necessary data and information for end users’ decision making but also to encourage them to proactively consider data utilization into their operations. For further development of the requirement elicitation to understand end users needs, insights and recommendations for the proposed technique designing and conducting of the workshop were obtained.


Author(s):  
Jhones Da Silva Amorim ◽  
Rubens Junqueira ◽  
Vanessa Alves Mantovani ◽  
Marcelo Ribeiro Viola ◽  
Carlos Rogério de Mello ◽  
...  

 Maximum and minimum streamflow are fundamental for water resource management, especially for water rights. However, lack of monitoring and scarce streamflow data limit such studies. Streamflow regionalization is a useful tool to overcome these limitations. The study developed models for regionalization of the maximum and minimum reference streamflows for the Mortes River Basin (MRB) (Water Resources Planning and Management Unit - GD2), Southern Minas Gerais State. The study used long-term streamflow historical series provided by the Brazilian National Water Agency (ANA). Previous exploratory analysis was performed, and it was observed that the streamflow series are stationary according to the Mann-Kendall test. The estimation of the streamflow for different return periods (RP) was performed by fitting Probability Density Functions (PDFs) that were tested by the Anderson-Darling (AD) test. The Generalized Extreme Values (GEV) and Wakeby were the most appropriate PDFs for maximum and minimum streamflows, respectively. The streamflow models were fitted using a power regression procedure, considering the drainage area of the watersheds as inputs. The fittings reached the coefficient of determination (R2) greater than 0.90. Thus, the streamflow regionalization models demonstrated good performance and are a potential tool to be used for water resource management in the studied basin.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1062 ◽  
Author(s):  
Sleemin Lee ◽  
Doosun Kang

The increasing frequency of extreme droughts and flash floods in recent years due to climate change has increased the interest in sustainable water use and efficient water resource management. Because the water resource sector is closely related to human activities and affected by interactions between the humanities and social sciences, there is a need for interdisciplinary research that can consider various elements, such as society and the economy. This study elucidates relationships within the social and hydrological systems and quantitatively analyzes the effects of a multi-purpose dam on the target society using a system dynamics model. A causal loop was used to identify causal relationships between the social and hydrological components of the target area, and a simulation model was constructed using the system dynamics technique. Additionally, climate change and socio-economic scenarios were applied to analyze the future effects of the multi-purpose dam on population change, the regional economy, water use, and flood damage prevention in the target area. The model proved reliable in predicting socio-economic changes in the target area and can be used to make decisions about efficient water resource management and water-resource-related facility planning.


Sign in / Sign up

Export Citation Format

Share Document