scholarly journals Geophysical Assessment of Seawater Intrusion into Coastal Aquifers of Bela Plain, Pakistan

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3408
Author(s):  
Muhammad Hasan ◽  
Yanjun Shang ◽  
Weijun Jin ◽  
Peng Shao ◽  
Xuetao Yi ◽  
...  

Seawater intrusion is a major challenge in many coastal areas all around the world, mainly caused by over-exploitation of freshwater resources, climate change, and sea-level rise. Consequently, seawater intrusion reaches several kilometers inland, thus making the freshwater resources polluted and unsuitable for human use. Conventionally, the fresh-saline water interface is delineated by the number of laboratory tests obtained from boreholes. However, such tests suffer from efficiency in terms of data coverage, time, and cost. Hence, this work introduces Dar-Zarrouk (D-Z) parameters, namely transverse resistance (Tr), longitudinal conductance (Sc), and longitudinal resistivity (ρL) computed from non-invasive vertical electrical sounding (VES). Two-dimensional (2D) imaging of D-Z parameters provides a clear distinction of fresh-saline aquifers. Such techniques remove ambiguities in the resistivity interpretation caused by overlapping of fresh and saline aquifers during the process of suppression and equivalence. This study was carried out by 45 VES along five profiles in the coastal area of Bela Plain, Pakistan. D-Z parameters delineate fresh, brackish, and saline aquifers with a wide range of values such as freshwater with Tr > 2000 Ωm2, Sc < 3 mho, and ρL > 20 Ωm; saline water with Tr < 1000 Ωm2, Sc > 25 mho, and ρL < 5 Ωm; and brackish water with Tr between 1000–2000 Ωm2, Sc from 3 to 25 mho, and ρL between 5–20 Ωm. The D-Z results were validated by the physicochemical analysis using 13 water samples and local hydrogeological setting. The obtained results propose that D-Z parameters can be used as a powerful tool to demarcate the fresh-saline aquifer interface with more confidence than other traditional techniques. This geophysical approach can reduce the expensive number of borehole tests, and hence contributes to the future planning and development of freshwater resources in the coastal areas.

2020 ◽  
Vol 12 (22) ◽  
pp. 9730 ◽  
Author(s):  
Muhammad Hasan ◽  
Yanjun Shang ◽  
Mohamed Metwaly ◽  
Weijun Jin ◽  
Majid Khan ◽  
...  

Delineation of fresh/saline groundwater is essential for sustainable water quality management, especially in the coastal areas all around the globe. Seawater intrusion causes substantial degradation in quality of freshwater resources in the coastal areas. The main reason for saltwater intrusion is the changing environment in terms of sea-level rise, climate change, and over-extraction of freshwater resources to meet the growing demands. In this study, an integrated approach of geophysical and geochemical methods was used to assess saltwater intrusion in the coastal areas of Bela Plain, Pakistan. The inverted electrical resistivity computed from 50 vertical electrical sounding (VES) constrained the subsurface into five layers and two aquifers through 3D imaging, such as silty clay and sandy clay containing saline water, and sand, sandy gravel, and gravel containing freshwater. However, the narrow range of resistivity values shows an overlap of saline/fresh groundwater. Such ambiguity in the resistivity interpretation was removed by Dar-Zarrouk (D-Z) parameters. D-Z parameters, namely transverse unit resistance (Tr), longitudinal unit conductance (Sc), and longitudinal resistivity (ρL) estimated from VES, marked a clear distinction between saline and fresh aquifers with a wide range of values. The geochemical method was performed using 20 water samples for the main cations (K+, Ca2+ Na+, and Mg2+), anions (SO42−, HCO3−, Cl−, and NO3−), and other parameters (TDS, EC, and pH). Fresh/saline aquifers revealed by D-Z parameters are in good agreement with those delineated by physicochemical parameters and local hydrogeological conditions. This study delineates seawater intrusion of about 13–42 km from Sonmiani Bay in the Arabian Sea towards the inlands of Bela Plain. Therefore, it is expected that this investigation will be helpful in future planning for the management and exploitation of freshwater resources in the study area. Our study suggests that D-Z parameters can be used as the most inexpensive alternative to the traditional geotechnical and environmental tests for the demarcation of fresh/saline groundwater with a large coverage in any coastal or contaminated area under a homogeneous or heterogeneous setting.


2020 ◽  
Vol 7 (2) ◽  
pp. 101
Author(s):  
Sugiarto Badaruddin ◽  
Akhmad Azis ◽  
Muhammad Fadhil Ashari ◽  
Miftahul Jannah ◽  
Ilham Ali ◽  
...  

In big cities, communities generally consume clean water from local water supply company which uses surface water sources. However, due to the limitations of the company in supplying water, particularly in the dry season, an alternative is required, such as using groundwater without causing over-exploitation. This study aims to determine the optimal rate of groundwater pumping in the coastal aquifer to avoid seawater up coning using SEAWAT V.4 numerical model. The research method was carried out using a GEO-7X GPS device to obtain coordinate's location, land elevation and observation well distance from the coastline. Secondary data in the form of aquifer thickness data and geological map of the site were obtained from previous studies. The salinity test results show that the average salinity value of the ten water samples from observation wells is 36.8 mg/l, which means that the water is categorized as non-saline water (freshwater). These data are in line with the groundwater utilization monitoring activity report of Makassar City Environment Office in 2018, which reported that Ujung Tanah and Wajo Districts were found to be free from seawater intrusion. Even so, the potential for seawater intrusion is still considered high because of the location of community groundwater wells are near from the coast. One of the efforts to prevent seawater up coning is by limiting groundwater pumping. From the numerical modeling results, it is found that the maximum groundwater discharge in the research site, namely P3 is 20% of total flow rate(0.3 m3/day), P5 is 20% (1.32 m3/day), P6 is 40% (0.52 m3/day) and P10 is 20%(0.63 m3/day).


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1548 ◽  
Author(s):  
Muhammad Hasan ◽  
Yanjun Shang ◽  
Gulraiz Akhter ◽  
Weijun Jin

Groundwater is the main supply of fresh water in many parts of the world. The intrusion of saline water into the fresh water is a serious threat to groundwater resources. Delineation of fresh-saline aquifer zones is essential to exploit the potable fresh water. The conventional method to differentiate fresh-saline water interface is to collect and test groundwater samples from boreholes using a number of laboratory tests. However, such techniques are expensive and time consuming. A non-invasive geoelectrical method, in combination with borehole data and physicochemical analysis, is proposed to assess the fresh-saline aquifers. This investigation was conducted in Jahanian area of Pakistan with forty-five vertical electrical soundings (VES) using Schlumberger array, nine bore wells and fifty physicochemical samples. The fresh-saline aquifers are delineated by aquifer resistivity and Dar-Zarrouk parameters namely transverse unit resistance and longitudinal unit conductance. The aquifer potential of fresh-saline water zones is estimated by the aquifer parameters namely transmissivity and hydraulic conductivity. Integration of subsurface resistivity with hydrogeological information reveals the subsurface formation of five layered succession, that is, topsoil having dry strata with resistivity greater than 30 Ωm, clay containing saline water with resistivity less than 15 Ωm, clay-sand with brackish water having resistivity between 15 and 25 Ωm, sand containing fresh water with resistivity ranging from 25 to 45 Ωm and gravel-sand having fresh water with resistivity greater than 45 Ωm. The geoelectrical columns and geological cross-sections constructed by the aquifer resistivity provide effectiveness of the interpretations for the evaluation of fresh-saline aquifers. The results of physicochemical analysis using WHO guideline validate the fresh-saline aquifer zones delineated by the geophysical method. This investigation contributes towards predicting the fresh-saline water interface using inexpensive geoelectrical method.


2002 ◽  
Vol 7 (2) ◽  
pp. 61 ◽  
Author(s):  
M.M. Sherif ◽  
V.P. Singh

Many aquifers around the globe are located in coastal areas and are thus subjected to the seawater intrusion phenomenon. The growth of population in coastal areas and the conjugate increase in human, agricultural, and industrial activities have imposed an increasing demand for freshwater. This increase in water demand is often covered by extensive pumping of fresh groundwater, causing subsequent lowering of the water table (or piezometric head) and upsetting the dynamic balance between freshwater and saline water bodies. The classical result of such a development is seawater intrusion. This paper presents a review for the seawater intrusion phenomenon in coastal aquifers. The effect of pumping activities on the seawater intrusion in the Nile Delta aquifer of Egypt is investigated. It was concluded that any additional pumping should be located in the middle Delta and avoided in the eastern and western sides of the Delta. 


2021 ◽  
Author(s):  
Delianis Pringgenies ◽  
Ali Ridlo ◽  
Lutfianna Fatma Dewi ◽  
Ali Djunaedi

Mangrove, or bakau as it is known in Indonesia, is one of the vegetations commonly found along the shallow coasts, estuaries, deltas and protected coastal areas and are still influenced by rising tides. After the Aceh tsunami disaster, mangrove restoration was intensively conducted in coastal areas all over Indonesia and was made into a special conservation program by the government. Mangrove is distinguishable by its big, wooden stilt roots, sharpening tip in the form of supporting leaves. The roots of the mangrove tree are morphologically distinguishable into heart root which grows into the ground and the stilt root which appear to grabs onto the surface of the ground. Mangrove forests serve several important ecological roles: they act as filters which turns saline water into fresh water, buffer from seawater intrusion, prevent erosion and abrasion, hold sediments to form new habitats, feeding ground, nursery ground, and spawning ground for a number of aquatic wildlife. Mangrove forest also possess economical functions such as as source of income, industrial ingredients for the locals and as source of new mangrove seedlings. Mangunhardjo Village, Urban Community of Mangunhardjo, Mangkang Area, Kecamatan of Tugu, Semarang City, Indonesia was an area dotted with brackish water pond. However, the area had been suffering from the effects of climate change, being inundated by overflow of river and seawater intrusion (rob). These disasters caused decline in the productivity of the ponds in the area. In an effort to combat the adverse effect of environmental change in the area, the locals of Mangunhardjo village decided to shift their livelihood by restoring the surrounding mangrove forest. Mangrove conservation at Mangunhardjo Village was conducted through activities of the program such as mangrove planting, mangrove-based food production, and mangrove waste management by applications of bioactivator bacteria for mangrove composting and production of mangrove-based natural dye for batik fabric. Mangrove-based natural dye for batik fabric from Rhizopora mucronata mangrove waste is a quite promising product and increases people’s income.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


1992 ◽  
Vol 25 (9) ◽  
pp. 253-259 ◽  
Author(s):  
A. M. O. Rennhack ◽  
D. M. W. Zee ◽  
E. S. Cunha ◽  
M. F. Portilho

Researches and Studies made by the Department of Oceanography of the Institute of Geoscience of the State University of Rio de Janeiro UERJ, evidenced the need for educational support where environment-related questions were concerned. A wide range of environment problems tend to concentrate in coastal areas, owing to disordinate urban growth combined with the lack of substructure to cope with it A large number of these problems can be minimized through the participation of the local community. Thus the goals of environmental education are to supply information, to promote a change in the population's attitude toward environmental problems, besides stimulating its participation by fostering its sense of responsibility. Preliminary results have demonstrated that the community has shown great interest in the work that has been proposed, and it has contributed with participation, promising response. Environmental education is fundamental when we consider possible solutions for environmental problems in coastal urban centers. Only by educating the main cause of environmental problems, man himself, will it be possible to consider the question starting from its very origin. This abstract presents two pioneer experiments in the Municipio of Rio de Janeiro, which are “Muito Prazer Marapendi” (“Glad to know you, Marapendi”) and “Troca de Areias da Praia de Copacabana” (“Exchange of Sands in Copacabana Beach”).


2021 ◽  
Vol 14 (9) ◽  
pp. 43-48
Author(s):  
Sunaryo .

The study was conducted with the objective to distinguish the presence of seawater intrusion layer or salt-water aquifer distribution along the data acquisition line at the locations. Data acquisition was conducted by using the Wenner-Schumberger configuration of geoelectrical resistivity. From this research, 4 lines and 4 points of vertical electrical sounding (VES) data for every line were obtained with the distance between electrode a as 10m. Based on the data processing, obtained depth up to 120m with the smallest resistivity value is 0.02Ωm and the largest is 6764.52Ωm. To make the distribution of resistivity values along the path line of the study, cross sections were made until a depth of 120m. Based on the cross-section, the low resistivity value (less than 1.5 Ωm) that interpreted as a seawater intrusion layer or salt water aquifer distribution is located at varying depths. There are intrusions for the SB1 cross section, there is an intrusion at a depth of 6m-7m as far as 10m, at a depth of 6m-8m as far as 10m for the SB2 cross section and at a depth of 22m - 26m as far as 25m for the SB3 cross section.


Sign in / Sign up

Export Citation Format

Share Document