scholarly journals A New Strategy for Sponge City Construction of Urban Roads: Combining the Traditional Functions with Landscape and Drainage

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3469
Author(s):  
Chengyao Wei ◽  
Jin Wang ◽  
Peirong Li ◽  
Bingdang Wu ◽  
Hanhan Liu ◽  
...  

Urban roads play a key role in sponge city construction, especially because of their drainage functions. However, efficient methods to enhance their drainage performance are still lacking. Here, we propose a new strategy to combine roads, green spaces, and the drainage system. Generally, by considering the organization of the runoff and the construction of the drainage system (including sponge city facilities) as the core of the strategy, the drainage and traffic functions were combined. This new strategy was implemented in a pilot study of road reconstruction conducted in Zhangjiagang, Suzhou, China. Steel slag was used in the structural layers to enhance the water permeability of the pavement and the removal of runoff pollutants. The combined effects of this system and of the ribbon biological retention zone, allowed achieving an average removal rate of suspended solids, a chemical oxygen demand, a removal of total nitrogen and total phosphorus of 71.60%, 78.35%, 63.93%, and 49.47%; in contrast, a traditional road could not perform as well. Furthermore, the volume control rate of the annual runoff met the construction requirements (70%). The results of the present study indicate that, combining the traditional basic functions of roads with those of landscape and drainage might be a promising strategy for sponge city construction of urban road.

Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 937 ◽  
Author(s):  
Jinjun Zhou ◽  
Jiahong Liu ◽  
Weiwei Shao ◽  
Yingdong Yu ◽  
Kun Zhang ◽  
...  

In recent years, urban waterlogging problems have become more and more serious, which has led to flood disasters in some cities. The Chinese government launched the sponge city pilot construction in 2015 to mitigate the risk of urban flooding and control the runoff in source areas. Rain-runoff control is one of the main indices of a sponge city, thus, evaluating its control effect is essential for sponge city construction. This paper chose Fenghuang city, located in the west of Hunan province, as a case study area to assess the rainwater control effect by using the MIKE FLOOD model. The results showed that: (1) the total annual runoff control rate (TARCR) of sponge city design was a reasonable indicator for daily rainwater control; (2) the goal of Fenghuang Sponge City was close to the 1-year rainfall event; and (3) infiltration and storage measures could reduce but not eliminate urban waterlogging. The capacity of the drainage system should be fundamentally improved to enhance the prevention standards of urban waterlogging.


2021 ◽  
Vol 237 ◽  
pp. 04008
Author(s):  
Shiyuan Huang ◽  
Pengfei Liu ◽  
Hongqin Zhang ◽  
Zhipeng Ding

The “Sponge City Construction Technical Guide” mentions the method for decomposing and implementing the annual total runoff control rate: volume method and model simulation method. Through research, it is found that the two are based on the control detailed planning level in decomposing the scale parameters of LID facilities. The indicators to each block are allocated through repeated tests through experience and trial calculations, resulting in a lack of scientific rationality in the process and results of the indicator decomposition, and because the Guide is still in the trial stage, there are few researches on the decomposition of runoff control indicators represented by SWMM. Therefore, with the help of MATLAB’s constraint optimization module and SWMM hydro-hydraulic model, this study proposes a complete set of decomposition ideas and methods for the decomposition and implementation of the annual runoff total control rate in the special planning of sponge city, and the index decomposition process through relevant cases Elaborate.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1163 ◽  
Author(s):  
Changmei Liang ◽  
Xiang Zhang ◽  
Jun Xia ◽  
Jing Xu ◽  
Dunxian She

Low-impact development (LID) has been widely used at both site-specific and local scales to try and mitigate the impact of urban stormwater runoff caused by increasing impervious urban areas. Recently, the concept of a “sponge city” was proposed by the Chinese government, which includes LID controls at the source, a pipe drainage system midway, and a drainage system for excess stormwater at the terminal. There is a need to evaluate the effectiveness of sponge city construction at the large urban catchment scale, particularly with different spatial distributions of LIDs that reduce directly connected impervious areas (DCIAs). In this paper, the performances of five design scenarios with different spatial distributions but same sizes of LID controls at the urban catchment scale were analyzed using a geographic information system (GIS) of the United States Environmental Systems Research Institute (ESRI)—based Storm Water Management Model (SWMM) of the United States Environmental Protection Agency (USEPA) and MIKE 11 of Danish Hydraulic Institute (DHI) in Xining City, China. Results confirmed the effectiveness of sponge city construction in reducing the urban stormwater runoff. The hydrological performance reduction was positively correlated and linearly dependent on DCIA reduction. Peak flow reduction was most sensitive to DCIA reduction, followed by runoff volume and peak time. As rainfall intensity increased, the hydrological performance was more sensitive to rainfall intensity than DCIA reduction. Results of this study provide new insights for stormwater managers to implement LID more effectively at the urban catchment scale.


2020 ◽  
pp. 1-12
Author(s):  
Jianying Song ◽  
Jianlong Wang ◽  
Guangpeng Xi ◽  
Hongjun Lin

Author(s):  
Yuyan Fan ◽  
Chengwen Wang ◽  
Haijun Yu ◽  
Junhao Pan ◽  
Zilu Ouyang

2017 ◽  
Vol 76 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Mijia Zhu ◽  
Jun Yao ◽  
Zhonghai Qin ◽  
Luning Lian ◽  
Chi Zhang

Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.


2018 ◽  
Vol 78 (5) ◽  
pp. 1159-1167 ◽  
Author(s):  
Behnam Heidari ◽  
Mohsen Soleimani ◽  
Nourollah Mirghaffari

Abstract The Fenton process is a useful and inexpensive type of advanced oxidation process for industrial wastewater treatment. This study was performed with the aim of using the steel slag as a catalyst in the heterogeneous Fenton process in order to reduce the chemical oxygen demand (COD) of oil refinery wastewater. The effects of various parameters including the reaction time (0.5, 1.0, 2.0, 3.0 and 4.0 h), pH (2.0, 3.0, 4.0, 5.0, 6.0 and 7.0), the concentration of steel slag (12.5, 25.0 and 37.5 g/L), and H2O2 concentration (100, 250, 400 and 500 mg/L) on the Fenton process were investigated. Furthermore, the effect of microwave irradiation on the process efficiency was studied by considering the optimum conditions of the mentioned parameters. The results showed that using 25.0 g/L of steel slag and 250 mg/L H2O2, at pH = 3.0, could reduce COD by up to 64% after 2.0 h. Also, microwave irradiation decreased the time of the process from 120 min to 25 min in the optimum conditions, but it consumed a high amount of energy. It could be concluded that steel slags had a high potential in the treatment of oil refinery wastewater through the Fenton process.


Author(s):  
S. Louki ◽  
N. Touach ◽  
A. Benzaouak ◽  
V. M. Ortiz-Martínez ◽  
M. J. Salar-García ◽  
...  

This work investigates the photocatalytic activity of new ferroelectric material with formula (Li0.95Cu0.15)Ta0.76Nb0.19O3 (LT76) in a single chamber microbial fuel cell (MFC) and compares its performance with the similar photocatalyst (Li0.95Cu0.15)Ta0.57Nb0.38O3 (LT57). The photocatalysts LT76 and LT57 were synthesized by ceramic route under the same conditions, with the same starting materials. The ratio Ta/Nb was fixed at 4.0 and 1.5 for LT76 and LT57, respectively. These phases were characterized by different techniques including X-ray diffraction (XRD), transmission electronic microscopy (TEM), particle size distribution (PSD), differential scanning calorimetry (DSC), and ultraviolet (UV)–visible (Vis). The new photocatalyst LT76 presents specific surface area of 0.791 m2/g and Curie temperature of 1197 °C. The photocatalytic efficiency of this material is assessed in terms of wastewater treatment and electricity generation by power density and removal rate of chemical oxygen demand (COD) in the presence of a light source. The values of maximum power density and COD removal were 19.77 mW/m3 and 93%, respectively, for LT76.


2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


Author(s):  
Hui Zhao ◽  
Heng Zhong ◽  
Lei Sun ◽  
Alexander V. Nevsky ◽  
Dongsheng Xia

The degradation efficiency of Acid Orange 52 dye in an aqueous solutions using the combination of electrocatalytic and photocatalytic processes has been studied. Electrocatalytic and photocatalytic methods in practice reckon among advanced oxidation processes (AOPs). The effect of catalyst B dosage and irradiarion time on the rate of mentioned dye degradation was studied in the photocatalytic process. It was shown, that when Acid Orange 52 simulated dye wastewater was treated by electrocatalytic technique under optimal conditions with catalyst A, the decolorization treatment effect was 95 % in visible part of light spectrum (464 nm) and 38.6 % in ultraviolet part (270 nm), respectively. When the combined electrocatalytic-photocatalytic technique was processed with catalysts A and B, the color removal rate of dye could reach 99.3% (464 nm) and 91.5% (270 nm), respectively. The large amount of products of small mole weight was formed in the course of oxidation reaction. Moreover, the obtained values of chemical oxygen demand (COD) and total organic carbon (TOC) witnessed, that the combination of electrocatalytic and photocatalytic processes could significantly improve the biodegradability of dye as a whole.It was shown, that the removal rate of COD and TOC, respectively, were 54.3% and 72.8%. The reaction intermediates were determined by electrospray ionization-mass spectrometry (ESI-MS) analysis, and as a result, the probable degradation mechanism (pathway) has been proposed. The results of the work may be useful as theoretical bases for designing effective resource-saving, technically efficient and economically sound wastewater treatment systems, containing hardly biodegradable azo dyes.Forcitation:Zhao H., Zhong H., Sun L., Xia D., Nevsky A.V. Acid Orange 52 dye degradation by electrocatalytic plus photocatalytic technique and intermediates detection. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 4-5. P. 111-118


Sign in / Sign up

Export Citation Format

Share Document