scholarly journals Assessment of the Ecological Risk from Heavy Metals in the Surface Sediment of River Surma, Bangladesh: Coupled Approach of Monte Carlo Simulation and Multi-Component Statistical Analysis

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 180
Author(s):  
Arup Acharjee ◽  
Zia Ahmed ◽  
Pankaj Kumar ◽  
Rafiul Alam ◽  
M. Safiur Rahman ◽  
...  

River sediment can be used to measure the pollution level in natural water, as it serves as one of the vital environmental indicators. This study aims to assess heavy metal pollution namely Copper (Cu), Iron (Fe), Manganese (Mn), Zinc (Zn), Nickel (Ni), Lead (Pb), and Cadmium (Cd) in Surma River. Further, it compares potential ecological risk index values using Hakanson Risk Index (RI) and Monte Carlo Simulation (MCS) approach to evaluate the environmental risks caused by these heavy metals. in the study area. With obtained results, enrichment of individual heavy metals in the study area was found in the order of Ni > Pb > Cd > Mn > Cu > Zn. Also, variance in MCS index contributed by studied metals was in the order of Cd > Pb > Ni > Zn > Cu. None of the heavy metals, except Ni, showed moderate contamination of the sediment. Risk index values from RI and MCS provide valuable insights in the contamination profile of the river, indicating the studied river is currently under low ecological risk for the studied heavy metals. This study can be utilized to assess the susceptibility of the river sediment to heavy metal pollution near an urban core, and to have a better understanding of the contamination profile of a river.

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Dongping Liu ◽  
Jian Wang ◽  
Huibin Yu ◽  
Hongjie Gao ◽  
Weining Xu

Abstract Background Heavy metal pollution of aquatic systems is a global issue that has received considerable attention. Canonical correlation analysis (CCA), principal component analysis (PCA), and potential ecological risk index (PERI) have been applied to heavy metal data to trace potential factors, identify regional differences, and evaluate ecological risks. Sediment cores of 200 cm in depth were taken using a drilling platform at 10 sampling sites along the Xihe River, an urban river located in western Shenyang City, China. Then they were divided into 10 layers (20 cm each layer). The concentrations of the As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were measured for each layer. Eight heavy metals, namely Pb, Zn, As, Cd, Cr, Cu, Ni, and Hg, were measured for each layer in this study. Results The average concentrations of the As, Cd, Cu, Hg, and Zn were significantly higher than their background values in soils in the region, and mainly gathered at 0–120 cm in depth in the upstream, 0–60 cm in the midstream, and 0–20 cm downstream. This indicated that these heavy metals were derived from the upstream areas where a large quantity of effluents from the wastewater treatment plants enter the river. Ni, Pb, and Cr were close or slightly higher than their background values. The decreasing order of the average concentration of Cd was upstream > midstream > downstream, so were Cr, Cu, Ni and Zn. The highest concentration of As was midstream, followed by upstream and then downstream, which was different to Cd. The potential factors of heavy metal pollution were Cd, Cu, Hg, Zn, and As, especially Cd and Hg with the high ecological risks. The ecological risk levels of all heavy metals were much higher in the upstream than the midstream and downstream. Conclusions Industrial discharge was the dominant source for eight heavy metals in the surveyed area, and rural domestic sewage has a stronger influence on the Hg pollution than industrial pollutants. These findings indicate that effective management strategies for sewage discharge should be developed to protect the environmental quality of urban rivers.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1801
Author(s):  
Valentina Andreea Calmuc ◽  
Madalina Calmuc ◽  
Maxim Arseni ◽  
Catalina Maria Topa ◽  
Mihaela Timofti ◽  
...  

It is a well–known fact that heavy metal pollution in sediments causes serious problems not only in the Danube basin, but also in the large and small adjacent river streams. A suitable method for assessing the level of heavy metals and their toxicity in sediments is the calculation of pollution indices. The present research aims to assess heavy metal pollution in the Lower Danube surface sediments collected along the Danube course (between 180 and 60 km) up to the point where the Danube River flows into the Danube Delta Biosphere Reserve (a United Nations Educational, Scientific and Cultural Organization – UNESCO, protected area). In addition, this monitored area is one of the largest European hydrographic basins. Five heavy metals (Cd, Ni, Zn, Pb, Cu) were analyzed in two different seasons, i.e., the autumn of 2018 and the spring of 2019, using the Inductively Coupled Plasma Mass Spectrometry (ICP– MS) technique. Our assessment of heavy metal pollution revealed two correlated aspects: 1. a determination of the potential risks of heavy metals in sediments by calculating the Potential Ecological Risk Index (RI), and 2. an evaluation of the influence of anthropogenic activities on the level of heavy metal contamination in the surface sediments, using three specific pollution indices, namely, the Geo–Accumulation Index (Igeo), the Contamination Factor (CF), and the Pollution Load Index (PLI). The results of this pioneering research activity in the region highlighted the presence of moderate metal (Ni and Cd) pollution and a low potential ecological risk for the aquatic environment.


Author(s):  
Xiuling Li ◽  
Henglun Shen ◽  
Yongjun Zhao ◽  
Weixing Cao ◽  
Changwei Hu ◽  
...  

The Yi River, the second longest river in Shandong Province, China, flows through Linyi City and is fed by three tributary rivers, Beng River, Liuqing River, and Su River in the northeastern part of the city. In this study, we determined the concentrations of five heavy metals (Cr, Ni, Cu, Zn, and Pb) in water, sediment, and aquatic macrophyte samples collected from the junction of the four rivers and evaluated the potential ecological risk of heavy metal pollution. Most of the heavy metals in water were in low concentrations with the water quality index (WQI) below 1, suggesting low metal pollution. The sediments showed low heavy metal concentrations, suggesting a low ecological risk based on the potential ecological risk index (RI) and the geo-accumulation index (Igeo). The aquatic plant species Potamogeton crispus accumulated considerable amounts of heavy metals, which were closely related to the metal concentrations of the sediment. The plant species Salvinia natans also showed an excellent metal accumulation capability. Based on our results, the junction of the four rivers is only slightly polluted in terms of heavy metals, and the plant species P. crispus is a suitable bioindicator for sediment heavy metal pollution.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Yi ◽  
Linus Shing Him Lo ◽  
Hongbin Liu ◽  
Pei-Yuan Qian ◽  
Jinping Cheng

Estuarine sediments are increasingly contaminated by heavy metals as a result of urbanization and human activities. Continuous multi-heavy metal accumulation in the ecosystem can provoke new effects on top of the complex environmental interactions already present in estuarine ecosystems. It is important to study their integrated influence on imperative microbial communities to reflect on the environmental and ecological risks they may impose. Inductively coupled plasma optical emission spectroscopy analysis for five metals Cd, Cr, Cu, Pb, and Zn showed that Cr and Cu concentrations in intertidal sediments of the urbanized Yangtze River estuary in China have consistently exceeded respective threshold effect concentration (TEC) levels. The geo-accumulation and potential ecological risk index results of the five metals showed that all sampling sites were weakly to moderately polluted, and at considerable to high ecological risk, respectively. Redundancy and correlation analyses showed that Zn followed by Cr in the ecosystem were explanatory of the shifts in recorded microbial community structures. However, the spatial variation in metal concentrations did not correspond to the selection of metal resistance genes (MRGs). Unlike many other dominant bacterial taxa, most of the sulfate-reducing bacteria (SRB) and associated sulfate respiration as the dominant microbially contributed ecological function were found to negatively correlate with Zn and total heavy metal pollution. Zn concentration was proposed to be a potent indicator for heavy metal pollution-associated microbial community compositional shifts under urbanized estuarine conditions. The associations between heavy metals and estuarine microbial communities in this study demonstrate the influence of heavy metals on microbial community structure and adaptations that is often overshadowed by environmental factors (i.e., salinity and nutrients).


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1060 ◽  
Author(s):  
Jinying Xu ◽  
Yuwei Chen ◽  
Lilin Zheng ◽  
Baogui Liu ◽  
Jinfu Liu ◽  
...  

Heavy metal pollution in sediment is one of the most serious problems in water bodies, including rivers, which can cause secondary pollution when environmental conditions change. In this study, surface sediment samples collected from the four main tributaries of Dongting Lake (i.e., Xiangjiang River (XR), Zishui River (ZR), Yuanjiang River (YR), and Lishui River (LR)) were analyzed for concentrations of Zn, Cr, Cu, As, Cd, and Pb. The spatial distribution, source, and potential ecological risk of these metals were determined. The results suggest a great spatial heterogeneity of heavy metals in the sediment of the studied rivers. Heavy metals had highest concentrations in the sediment of XR, especially midstream and downstream. A principal component analysis (PCA) and correlation analysis indicated that Cd and As were mainly from industrial wastewater and mineral mining, Cr came from natural process and agricultural activities, and Zn and Cu potentially from both. Pb was originated from atmospheric deposition and river inflow transportation. According to the geo-accumulation index ( I g e o ), enrichment factor (EF), and risk index (RI) assessment, heavy metals pollution was highest in the sediment of XR, and Cd was the main pollutant in the sediment of XR, presenting considerable potential ecological risk. This may contribute to heavy metal pollution in Dongting Lake. This paper provides a reference for the aquatic environmental management of heavy metals in Dongting Lake area and its tributaries.


2021 ◽  
Author(s):  
yunhu hu ◽  
mu you ◽  
Guijian Liu ◽  
zhongbing dong

Abstract The concentrations of heavy metals (As, Cd, Cr, Cu, Hg, Mn, Pb and Zn) in surface soils in the area surrounding a coal-fired power plant in China were measured, the distribution characteristics of heavy metals in different wind directions were analyzed, and the pollution degree of heavy metal in soil was evaluated. The soil around the power plant is generally polluted by heavy metals, and the degree of pollution is heavy pollution and moderate pollution. The potential ecological hazard of heavy metals in soil is moderate or slight. The values of Nemerow index and potential ecological risk index are different among different directions and different distances from the power plant. Cd, Hg and As are the mainly contributors for the potential ecological risk. The results revealed that wind direction is important for the distribution of heavy metal around coal-fired power plant. The study can provide a theoretical basis for the prevention and management of soil heavy metal pollution around coal-fired power plant.


2014 ◽  
Vol 14 (6) ◽  
pp. 1599-1610 ◽  
Author(s):  
X. Jiang ◽  
W. X. Lu ◽  
H. Q. Zhao ◽  
Q. C. Yang ◽  
Z. P. Yang

Abstract. The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Xia Sun ◽  
Bao-Shi Li ◽  
Xuan-Li Liu ◽  
Cheng-Xuan Li

Coastal waters are polluted by heavy metals to varying degrees, posing potential risks to marine ecology and human health. In May 2006, the pollution levels, sources, and ecological risks of heavy metals (Cu, Pb, Zn, Cd, Hg, and As) in seawater, surface sediments, and living organisms were studied in Jiuzhen Bay in Fujian, China. This study identified Hg (0.26–0.72 µg/L) and As (20.3–31.5 µg/L) pollution in the seawater of Jiuzhen Bay. In sediments, heavy Pb pollution (946 µg/g dw) was only detected at one station at a level posing very serious potential risk, while Hg pollution (0.052–0.087 µg/g dw) was observed at three stations at a level posing serious potential risk. No heavy metal pollution was detected in sediments at other stations. The concentrations of five heavy metals (Cu, Zn, As, Cd, and Pb) exceeded the corresponding National Quality Standards for oysters, indicating heavy pollution, based on an ecological risk assessment. In clams, two heavy metals (Pb and As) exceeded the standards, indicating light pollution, based on an ecological risk assessment. No heavy metal pollution was found in fish or shrimps. The heavy metals in the seawater and sediments of Jiuzhen Bay are mainly derived from the river discharges of Luxi and Wujiang Rivers although sewage discharge along the coast of Jiuzhen Bay is another source of heavy metal pollution at some stations. Given the pollution of Pb, Hg, and As in seawater and sediments at some stations within the bay, the potential risks of Pb, Hg, and As in living organisms to both the marine ecology and human health deserve increased attention.


2017 ◽  
Vol 14 (3-4) ◽  
Author(s):  
Nusreta Djonlagic

In this study the results of a 15-year long monitoring survey on heavy metals in water at Lake Modrac were assessed using pollution indices of heavy metals, such as Heavy metal pollution index HPI, Heavy metal evaluation index HEI and the Degree of contamination CD. The results of the survey on heavy metal pollution of sediment conducted in 2015 were used as input data for the following pollution indices: Concentration factor , Pollution load index PLI, Enrichment factor EF, Index of geo-accumulation Igeo, Ecological risk factor , Potential ecological risk index to the water-body, RI. The results showed a good correlation and the lake sediment was characterized as polluted. Enrichment factors and indices of geo-accumulation of heavy metals were indicated as very high enriched in the sediment, and have been identified as an anthropogenic source of pollution. Cumulative presence in the sediment is assessed through the pollution index, RI, and has been assessed as moderate ecological risk to the lake water-body. The application of pollution indices presents a valuable tool in assessing the long-term pollution status of Lake Modrac.


2013 ◽  
Vol 295-298 ◽  
pp. 1586-1593
Author(s):  
Xiao Qing Zhao ◽  
Hong Hui Yang ◽  
Jian Chen

Based on the farmland soils along the Bijiang River, a main tributary of the international Lantsang-Mekong River flowing through the Jinding Lead-Zinc Deposit, this dissertation makes analyses on the pollution characteristics of spatial variation in farmland soils by adopting the soil sampling and testing analysis and applying single-factor pollution index (SPI) evaluation and Nemerow composite pollution index (NCPI) evaluation. The results indicate that: (1) In accordance with Environmental Quality Standard for Soils (II), the content of Cd contained in the farmland soils has severely exceeded the standard in a large scale, followed by Pb and Zn. However, the content of As is maintained within the specified standard; (2)The SPI values of soils are in the following sequence: Cd>Zn>Pb>As. The pollution level caused by the heavy metal “Cd” to the farmland soils is extremely heavy in a wide range, and a majority of the farmlands are heavily polluted by Zn. The farmlands with moderate pollution by Pb are centered at Plot 2 in the deposit, and only a few farmland soils are moderately polluted by As at Plot 2 in the deposit;(3) Based on the NCPI, the results indicate that the NCPI of the farmland soils has reached to the degree of heavy pollution; (4) It is indicated based on the RPI evaluation that the RPI values of As, Cd, Pb and Zn contained in the farmland soils have exceeded the standard in the following sequence: Pb>Zn>Cd>As, which illustrates that during the development of Jinding Lead-Zinc Deposit in Lanping County, the heavy metals imposing the most profound influence on the soil pollution are Pb and Zn. The heavy metal pollution in the farmland soils from the upper reaches to the lower reaches of the Bijiang River is not only caused by the development of Jinding Lead-Zinc Deposit in Lanping County, but is also associated with its high soil background value;(5) There is a remarkable spatial variation of heavy metal pollution in farmland soils from the upper reaches to the lower reaches of the Bijiang River. Both the SPI and the NCPI values of heavy metals in the soils within the deposit at the upper reaches of the Bijiang River are the lowest; the pollution index of the soils closest to the deposit are the highest, and the pollution index of the soils with a certain distance from the deposit drops swiftly; the pollution index of Plot 4 rises to a certain degree at the middle reaches, and gradually ascends near the Yunlong County seat at Plot 5, however, with a comparatively small growth rates.


Sign in / Sign up

Export Citation Format

Share Document