scholarly journals Fate of Trace Organic Compounds in Granular Activated Carbon (GAC) Adsorbers for Drinking Water Treatment

Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 479 ◽  
Author(s):  
Alexander Sperlich ◽  
Mareike Harder ◽  
Frederik Zietzschmann ◽  
Regina Gnirss
Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3275
Author(s):  
Philipp Otter ◽  
Katharina Mette ◽  
Robert Wesch ◽  
Tobias Gerhardt ◽  
Frank-Marc Krüger ◽  
...  

A large variety of Advanced Oxidation Processes (AOPs) to degrade trace organic compounds during water treatment have been studied on a lab scale in the past. This paper presents the combination of inline electrolytic chlorine generation (ECl2) with low pressure UV reactors (UV/ECl2) in order to allow the operation of a chlorine-based AOP without the need for any chlorine dosing. Lab studies showed that from a Free Available Chlorine (FAC) concentration range between 1 and 18 mg/L produced by ECl2 up to 84% can be photolyzed to form, among others, hydroxyl radicals (OH) with an UV energy input of 0.48 kWh/m3. This ratio could be increased to 97% by doubling the UV energy input to 0.96 kWh/m3 and was constant throughout the tested FAC range. Also the achieved radical yield of 64% did not change along the given FAC concentration range and no dependence between pH 6 and pH 8 could be found, largely simplifying the operation of a pilot scale system in drinking water treatment. Whereas with ECl2 alone only 5% of benzotriazoles could be degraded, the combination with UV improved the degradation to 89%. Similar results were achieved for 4-methylbenzotriazole, 5-methylbenzotriazole and iomeprol. Oxipurinol and gabapentin were readily degraded by ECl2 alone. The trihalomethanes values were maintained below the Germany drinking water standard of 50 µg/L, provided residual chlorine concentrations are kept within the permissible limits. The here presented treatment approach is promising for decentralized treatment application but requires further optimization in order to reduce its energy requirements.


Author(s):  
O.J.I. Kramer ◽  
C. van Schaik ◽  
P.D.R. Dacomba-Torres ◽  
P.J. de Moel ◽  
E.S. Boek ◽  
...  

2019 ◽  
Vol 5 (3) ◽  
pp. 609-617 ◽  
Author(s):  
Yifeng Huang ◽  
Zhijie Nie ◽  
Jie Yuan ◽  
Audrey Murray ◽  
Yi Li ◽  
...  

A test was developed to measure the present-day adsorptive capacity of granular activated to help drinking water treatment professionals to determine when the GAC needs replacement.


2021 ◽  
Author(s):  
Nick Dimas

Drinking Water Treatment Plants employ biofiltration systems to increase water quality through nutrient reduction. Microbial biofilms housed in biofilter media, are responsible for nutrient uptake and biodegradation. The purpose of this study was to re-evaluate the function and efficiency of biofilter media and investigate seasonal changes in the microbial populations. TOC and DO were more reduced in Granular Activated Carbon (GAC) media than in anthracite. Heterotrophic plate counts (HPC) were conducted to establish seasonal trends on microbial population. PCR-amplified 16S rRNA fragments were sequenced to compare microbial communities. Summer samples have higher HPC than winter samples. Summer samples yielded a reduction in microbial diversity and no detectable overlap with winter samples. Confocal microscopy conducted to qualitatively visualize the structure of biofilms was complemented by quantitative COMSTAT analysis showing GAC with double the biomass due to a greater level of attachment sites. GAC outcompetes anthracite in chemical adsorption and biological activity.


2018 ◽  
Vol 4 (10) ◽  
pp. 1662-1670 ◽  
Author(s):  
Yifeng Huang ◽  
Zhijie Nie ◽  
Chengjin Wang ◽  
Yi Li ◽  
Mindy Xu ◽  
...  

Pilot-scale and lab-scale experiments were performed to evaluate the ability of granular activated carbon (GAC) to quench hydrogen peroxide (H2O2).


Chemosphere ◽  
2013 ◽  
Vol 92 (2) ◽  
pp. 184-191 ◽  
Author(s):  
Eliane Sloboda Rigobello ◽  
Angela Di Bernardo Dantas ◽  
Luiz Di Bernardo ◽  
Eny Maria Vieira

Sign in / Sign up

Export Citation Format

Share Document