scholarly journals Multi-Level Contact Oxidation Process Performance When Treating Automobile Painting Wastewater: Pollutant Removal Efficiency and Microbial Community Structures

Water ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 881 ◽  
Author(s):  
Yufang Zhu ◽  
Tong Zhu ◽  
Michael Groetzbach ◽  
Hui Han ◽  
Yongguang Ma
2014 ◽  
Vol 69 (7) ◽  
pp. 1534-1540 ◽  
Author(s):  
Xiaoming Zou ◽  
Yi Feng ◽  
Changming Sheng ◽  
Jia Liu ◽  
Lijun Lu ◽  
...  

Generally, biofilm-supporting carriers in biological contact oxidation processes are made from thermoplastic polymers, which cause potential ecological damage because of the low biodegradation and high accumulation in organisms. Thus, four bamboo-based fibers, bamboo primitive fiber, bamboo fiber, bamboo charcoal fiber (BBF) and bamboo charcoal–cotton blending fiber (BCBF), were used as carriers and compared with two commercial carriers (vinylon (VY) and polypropylene (PP)) in a biological contact oxidation process system with the goal to develop a biodegradable and sustainable biofilm medium. Under steady state conditions, pollutants (chemical oxygen demand and NH4+-N) in stage 1 (days 1–29, hydraulic retention time (HRT) = 12 h) were efficiently removed with a removal efficiency ranging from 85 to 95%. In stage 2 (days 30–53, HRT = 4–12 h), the pollutant-removal efficiency of four reactors (BBF, BCBF, VY and PP) were nearly indistinguishable and were higher than the two other reactors, especially when the HRT was set at 4 h (days 46–53). Consequently, two optimized bamboo-based fibers (BBF and BCBF) can be developed as biofilm carriers for wastewater treatment in the future. Furthermore, studies demonstrated that the biofilm development difference showed good correlation with their specific area and relative oxygen content but not with their tenacity and antimicrobial activity.


1999 ◽  
Vol 65 (8) ◽  
pp. 3566-3574 ◽  
Author(s):  
Sarah J. MacNaughton ◽  
John R. Stephen ◽  
Albert D. Venosa ◽  
Gregory A. Davis ◽  
Yun-Juan Chang ◽  
...  

ABSTRACT Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil spill. Four treatments (no oil control, oil alone, oil plus nutrients, and oil plus nutrients plus an indigenous inoculum) were applied. In situ microbial community structures were monitored by phospholipid fatty acid (PLFA) analysis and 16S rDNA PCR-denaturing gradient gel electrophoresis (DGGE) to (i) identify the bacterial community members responsible for the decontamination of the site and (ii) define an end point for the removal of the hydrocarbon substrate. The results of PLFA analysis demonstrated a community shift in all plots from primarily eukaryotic biomass to gram-negative bacterial biomass with time. PLFA profiles from the oiled plots suggested increased gram-negative biomass and adaptation to metabolic stress compared to unoiled controls. DGGE analysis of untreated control plots revealed a simple, dynamic dominant population structure throughout the experiment. This banding pattern disappeared in all oiled plots, indicating that the structure and diversity of the dominant bacterial community changed substantially. No consistent differences were detected between nutrient-amended and indigenous inoculum-treated plots, but both differed from the oil-only plots. Prominent bands were excised for sequence analysis and indicated that oil treatment encouraged the growth of gram-negative microorganisms within the α-proteobacteria andFlexibacter-Cytophaga-Bacteroides phylum. α-Proteobacteria were never detected in unoiled controls. PLFA analysis indicated that by week 14 the microbial community structures of the oiled plots were becoming similar to those of the unoiled controls from the same time point, but DGGE analysis suggested that major differences in the bacterial communities remained.


Sign in / Sign up

Export Citation Format

Share Document