scholarly journals Modelling of Humidity Dynamics for Open-Cathode Proton Exchange Membrane Fuel Cell

2021 ◽  
Vol 12 (3) ◽  
pp. 106
Author(s):  
Fengxiang Chen ◽  
Liming Zhang ◽  
Jieran Jiao

The durability and output performance of a fuel cell is highly influenced by the internal humidity, while in most developed models of open-cathode proton exchange membrane fuel cells (OC-PEMFC) the internal water content is viewed as a fixed value. Based on mass and energy conservation law, mass transport theory and electrochemistry principles, the model of humidity dynamics for OC-PEMFC is established in Simulink® environment, including the electrochemical model, mass flow model and thermal model. In the mass flow model, the water retention property and oxygen transfer characteristics of the gas diffusion layer is modelled. The simulation indicates that the internal humidity of OC-PEMFC varies with stack temperature and operating conditions, which has a significant influence on stack efficiency and output performance. In order to maintain a good internal humidity state during operation, this model can be used to determine the optimal stack temperature and for the design of a proper control strategy.

Author(s):  
Satish G. Kandlikar ◽  
Zijie Lu

Each fuel cell component of a proton exchange membrane fuel cell (PEMFC) used in automotive application operates most effectively (from performance and durability standpoints) within specific ranges of water content and temperature. The water and heat transport processes are coupled and present a challenge in providing the right balance over the entire range of operating conditions. Another important related aspect is CO poisoning of the electrocatalyst, which adversely affects the fuel cell performance. Freezing and cold-start present additional challenges for automotive PEMFCs. A critical review of the recent developments on these topics is presented in this paper. The study covers both the microscopic and macroscopic aspects of the transport within membrane, catalyst layers, gas diffusion layers, and gas channels, and an overview of the current PEMFC cooling technology. After discussing the current status, suggestions for future work on the above topics are presented.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4069
Author(s):  
Mingzhang Pan ◽  
Chengjie Pan ◽  
Jinyang Liao ◽  
Chao Li ◽  
Rong Huang ◽  
...  

As a highly nonlinear system, the performance of proton exchange membrane fuel cell (PEMFC) is controlled by various parameters. If the effects of all parameters are considered during the performance optimization, low working efficiency and waste of resources will be caused. The development of sensitivity analysis for parameters can not only exclude the parameters which have slight effects on the system, but also provide the reasonable setting ranges of boundary values for simulation of performance optimization. Therefore, sensitivity analysis of parameters is considered as one of the methods to optimize the fuel cell performance. According to the actual operating conditions of PEMFC, the fluctuation ranges of seven sets of parameters affecting the output performance of PEMFC are determined, namely cell operating temperature, anode/cathode temperature, anode/cathode pressure, and anode/cathode mass flow rate. Then, the control variable method is used to qualitatively analyze the sensitivity of main parameters and combines with the Monte Carlo method to obtain the sensitivity indexes of the insensitive parameters under the specified current density. The results indicate that among these parameters, the working temperature of the fuel cell is the most sensitive to the output performance under all working conditions, whereas the inlet temperature is the least sensitive within the range of deviation. Moreover, the cloud maps of water content distribution under the fluctuation of three more sensitive parameters are compared; the results verify the simulated data and further reveal the reasons for performance changes. The workload of PEMFC performance optimization will be reduced based on the obtained results.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Jehun Hahm ◽  
Hyoseok Kang ◽  
Jaeho Baek ◽  
Heejin Lee ◽  
Mignon Park

This paper proposes an integrated photovoltaic (PV) and proton exchange membrane fuel cell (PEMFC) system for continuous energy harvesting under various operating conditions for use with a brushless DC motor. The proposed scheme is based on the incremental conductance (IncCond) algorithm combined with the sliding mode technique. Under changing atmospheric conditions, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of maximum power point tracking (MPPT) is particularly important. To manage such a hybrid system, control strategies need to be established to achieve the aim of the distributed system. Firstly, a Matlab/Simulink based model of the PV and PEMFC is developed and validated, as well as the incremental conductance sliding (ICS) MPPT technique; then, different MPPT algorithms are employed to control the PV array under nonuniform temperature and insolation conditions, to study these algorithms effectiveness under various operating conditions. Conventional techniques are easy to implement but produce oscillations at MPP. Compared to these techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state and provides more precise tracking.


2007 ◽  
Vol 169 (2) ◽  
pp. 327-333 ◽  
Author(s):  
Mehdi Kheirmand ◽  
Hussein Gharibi ◽  
Rasol Abdullah Mirzaie ◽  
Monireh Faraji ◽  
Mohammad Zhiani

Author(s):  
N. Akhtar ◽  
P. J. A. M. Kerkhof

The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a catalyst layer (CL). The liquid water saturation profiles have been calculated for varying structural and physical properties, i.e., porosity, permeability, thickness and contact angle for each of these layers. It has been observed that each layer has its own role in determining the liquid water saturation within the CL. Among all the layers, the GDL is the most influential layer that governs the transport phenomena within the PEMFC cathode. Besides, the thickness of the CL also affects the liquid water saturation and it should be carefully controlled.


Sign in / Sign up

Export Citation Format

Share Document