scholarly journals Assessment of Fracture Resistance of Maxillary First Molars after Root Canal Preparation Using Three Different Rotary Instruments (V-Taper, ProTaper, Vortex Blue): Finite Element Analysis

2019 ◽  
Author(s):  
mehran malakpour
2020 ◽  
Vol 10 (8) ◽  
pp. 2981
Author(s):  
Giorgia Carpegna ◽  
Mario Alovisi ◽  
Davide Salvatore Paolino ◽  
Andrea Marchetti ◽  
Umberto Gibello ◽  
...  

The aim of this study was to evaluate the contact pressure distribution of two different nickel-titanium (NiTi) endodontic rotary instruments against the root canal walls and to virtually predict their centering ability during shaping with finite element analysis (FEA). Resin blocks simulating root canals were used. One was shaped with ProGlider and ProTaper Next (PTN) X1-X2 and one with ScoutRace and BioRace (BR) 1, 2 and 3. Both resin blocks were virtually replicated with computer-aided design (CAD) software. The endodontic instruments ProTaper Next (PTN) X2 and BioRace BR3 were also replicated with CAD. The NiTi instruments and the shaped blocks geometries were discretized and exported for FEA. The instrument rotation in the root canals was simulated. The finite element simulation was performed by applying an insertion and extraction force of 2.5 N with a constant rotational speed (300 rpm). To highlight possible differences between pressure distributions against the root canal portions outside and inside the canal curvature, the parameter Var was originally defined. Var values were systematically lower for PTN X2, revealing a better centering ability. FEA proved effective for the virtual prediction of the centering ability of NiTi instruments during an early design phase without the use of prototypes.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Author(s):  
Zanza Alessio ◽  
Seracchiani Marco ◽  
Di Nardo Dario ◽  
Reda Rodolfo ◽  
Gambarini Gianluca ◽  
...  

Author(s):  
Vinícius Felipe Wandscher ◽  
César Dalmolin Bergoli ◽  
Ariele Freitas de Oliveira ◽  
Osvaldo Bazzan Kaizer ◽  
Alexandre Luiz Souto Borges ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document