21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations

Author(s):  
Erik Kjellström ◽  
Grigory Nikulin ◽  
Ulf Hansson ◽  
Gustav Strandberg ◽  
Anders Ullerstig
2008 ◽  
Vol 36 ◽  
pp. 1-16 ◽  
Author(s):  
T Semmler ◽  
S Varghese ◽  
R McGrath ◽  
P Nolan ◽  
S Wang ◽  
...  

2021 ◽  
Author(s):  
Florian Ehmele ◽  
Lisa-Ann Kautz ◽  
Hendrik Feldmann ◽  
Yi He ◽  
Martin Kadlec ◽  
...  

<p>Enduring and extensive heavy precipitation associated with widespread river floods are among the main natural hazards affecting Central Europe. Since such events are characterized by long return periods, it is difficult to adequately quantify their frequency and intensity solely based on the available observations of precipitation. Furthermore, long-term observations are rare, not homogeneous in space and time, and thus not suitable to run hydrological models (HMs). To overcome this issue, we make use of the recently introduced LAERTES-EU (LArge Ensemble of Regional climaTe modEl Simulations for EUrope) data set, which is an ensemble of regional climate model simulations providing 12.000 simulated years. LAERTES-EU is adapted and applied for the use in an HM to calculate discharges for large river catchments in Central Europe, where the Rhine catchment serves as the pilot area for calibration and validation. Quantile mapping with a fixed density function is used to correct the bias in model precipitation. The results show clear improvements in the representation of both precipitation (e.g., annual cycle and intensity distributions) and simulated discharges by the HM after the bias correction. Furthermore, the large size of LAERTES-EU improves the statistical representativeness also for high return values of precipitation and discharges. While for the Rhine catchment a clear added value is identified, the results are more mixed for other catchments (e.g., the Upper Danube).</p>


Sign in / Sign up

Export Citation Format

Share Document