Petroleum products - Fuels (class F) - Considerations for fuel suppliers and users regarding marine fuel quality in view of the implementation of maximum 0,50 % sulfur in 2020

2019 ◽  
Author(s):  
M. Parthasarathy ◽  
S. Ramkumar ◽  
J. Isaac Joshua Ramesh Lalvani

The petroleum fuels are continuously depleted, and they are a non-renewable source of the energy. Continuous usage of them leads to depletion of resource and an increase in global warming. Due to higher norms imposed on the fuel quality, the refining cost gets higher, and hence, obviously, the cost of the petroleum products would be higher. This leads to the search for alternate energy sources. The wide usage of CNG in the petrol engine is a common practice in the automobile sector, but the combined usage of CNG in dual fuel condition with the blend of ethanol and TME has not been practiced yet. The fuels used for this research are diesel, neat Tamanu biodiesel, blend of 10% ethanol with 90% Tamanu Methyl Ether (TMEE10) and CNG. Due to the higher compression ratio of CI engine, the usage of CNG in it will produce higher brake thermal efficiency. Due to the higher-octane rating of CNG, it wouldn’t be used as fuel in CI engine. If CNG is used as a fuel in CI engine, it leads to higher knock and vibrations. Hence, it is difficult to operate the engine, but an energy share of CNG can be used in a CI engine. In this research, CNG is inducted into the engine. The flow rate is varied, such as 0.015 kg/hr., 0.026 kg/hr., 0.035 kg/hr. and 0.046 kg/hr., while the blend of biodiesel and ethanol is injected directly into the combustion chamber. Since the calorific value of TME and ethanol is less when compared to diesel, CNG is inducted to enrich the overall energy mix of the fuel. Based on the experimental investigation, it is found that the combination of TMEE10 and CNG flow rate of 0.035 kg/hr. produces higher performance and better emission characteristics.


Author(s):  
Mauro Y. Fujikawa ◽  
Eduardo O. de A. Silva ◽  
Reinaldo A. das Neves ◽  
Derci Donizeti Massitelli ◽  
Newton Orlando Abraha˜o ◽  
...  

This work aims to present the results obtained from the experience gained through the accomplishment of the inspection with the ultrasonic umbilical pig in a non-piggable internal pipe buried in the Transpetro Storage Terminal in Sa˜o Caetano do Sul, in Sa˜o Paulo, Brazil. The pipeline considered in this work is a line for marine fuel oil, which, because of its high viscosity, must be heated in order to flow. The oil is heated in the terminal by the steam produced in boilers. The heat transfer may occur in a heat exchanger or inside the storage tank, and the pipeline referred is thermally isolated. So that the line could be inspected, it was divided in two parts, one upstream of the pumps (suction), which is a 12-inch line, and the other downstream of the same pumps (discharge), which is a 14-inch line. This work has been developed by Transpetro’s Pipeline Operation, Maintenance, Inspection and Safety Departments together, since the planning phase, passing by the job execution and getting to the conclusion. To begin with, the operational liberation of the line had to be agreed between all the departments involved with the PIG inspection, which were mentioned before, and Transpetro’s Logistics Department. Once the PIG passage was scheduled, an initial cleaning had to be performed by the Operation Activity. Since this line is non-piggable, the installation of adaptations was necessary. After that, the passage of cleaning PIGs was possible, and the line sections could be enabled. The next step was the inspection of the pipeline with umbilical ultrasonic PIGs. After the passage of these PIGs, the adaptations had to be removed and the pipeline had to be conditioned for the operational return. After this part of the inspection was finished, the verification of the results issued was necessary. Once the theoretical results were available, ditches were opened for correlation inspection and temporary repairs in the most critical points for the operation were applied. The last part of the work consists in an analysis study of technical and economical viability for rehabilitation of the lines.


Sign in / Sign up

Export Citation Format

Share Document