Faculty Opinions recommendation of CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization.

Author(s):  
Michel Labouesse
Development ◽  
1991 ◽  
Vol 111 (2) ◽  
pp. 337-356
Author(s):  
X.B. Shi ◽  
Z.I. Qiu ◽  
W. He ◽  
J. Frankel

Stylonychia mytilus is a dorsoventrally flattened ciliate with compound ciliary structures arranged in a specific manner on the cell surface. In mirror-image (MI) doublets of this ciliate, two nearly complete sets of ciliary structures are arrayed side-by-side, one in a normal or ‘right-handed’ (RH) arrangement, the other in a reversed or ‘left-handed’ (LH) arrangement. MI-doublets exist in two forms, one with the RH component on the right, the LH component on the left, and feeding structures near the center (‘buccal-adjoining MI-doublet’); the other with the RH component on the left, the LH component on the right, and feeding structures on the lateral edges (‘buccal-opposing MI-doublet’). We describe an operation that can generate either type of MI-doublet. This operation interchanges large anterior and posterior regions of the cell, transposing the original posterior region anteriorly (P—A) and the original anterior region posteriorly (A—P), while retaining the original anteroposterior polarity of each region. Two sets of new ciliary structures then are formed in mirror-image arrangement, with the set in the P—A region oriented normally and the set in the A—P region undergoing a reversal of polarity along its anteroposterior axis. This sometimes creates end-to-end MI forms, but more commonly produces side-by-side MI-doublets through a folding together of the P—A and A—P regions. This folding occurs because one lateral edge of the cell had been removed during the operation; if the left edge was removed, the complex folds to the left and forms a buccal-adjoining MI-doublet, whereas if the right edge was removed, the complex folds to the right and forms a buccal-opposing MI-doublet. Both types can reorganize and later divide true-to-type, although the ‘buccal-opposing’ type is by far the more stable of the two. The generation of mirror-image forms is dependent on the prior abnormal juxtaposition of regions from opposite ends of the cell, and involves a coordinated respecification of large-scale organization. We interpret this response to be a consequence of intercalation of missing intervening positional values in the zone of posterior-anterior abutment.


Development ◽  
1997 ◽  
Vol 124 (4) ◽  
pp. 861-870 ◽  
Author(s):  
A. Chedotal ◽  
E. Bloch-Gallego ◽  
C. Sotelo

The formation of the olivocerebellar projection is supposed to be regulated by positional information shared between pre- and postsynaptic neurons. However, experimental evidence to support this hypothesis is missing. In the chick, caudal neurons in the inferior olive project to the anterior cerebellum and rostral ones to the posterior cerebellum. We here report in vitro experiments that strongly support the existence of anteroposterior polarity cues in the embryonic cerebellum. We developed an in vitro system that was easily accessible to experimental manipulations. Large hindbrain explants of E7.5-E8 chick embryos, containing the cerebellum and its attached brainstem, were plated and studied using axonal tracing methods. In these cultures, we have shown that the normal anteroposterior topography of the olivocerebellar projection was acquired, even when the cerebellar lamella was detached from the brainstem and placed again in its original position. We also found that, following various experimental rotations of the anteroposterior axis of the cerebellum, the rostromedian olivary neurons still project to the posterior vermis and the caudolateral neurons to the anterior vermis, that now have inverted locations. Thus, the rotation of the target region results in the rotation of the projection. In addition, we have shown that the formation of the projection map could be due to the inability of rostromedian inferior olivary axons to grow in the anterior cerebellum. All these experiments strongly indicate that olivocerebellar fibers recognize within their target region polarity cues that organize their anteroposterior topography, and we suggest that Purkinje cells might carry these cues.


Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 141-148
Author(s):  
J.R. Bayascas ◽  
E. Castillo ◽  
A.M. Munoz-Marmol ◽  
E. Salo

Platyhelminthes are widely considered to be the sister group of coelomates (Philippe, H., Chenuil, A. and Adoutte, A. (1994)Development 1994 Supplement, 15–24) and the first organisms to show bilateral symmetry and cephalization. Within this phylum, the freshwater planarians (Turbellaria, Tricladida) have been used as model systems for studying bidirectional regeneration (Slack, J. M. W. (1980) J. Theor. Biol 82, 105–140). We have been attempting to identify potential pattern-control genes involved in the regeneration of planarian heads and tails after amputation. Since Hox cluster genes determine positional identity along the anteroposterior axis in a wide range of animals (Slack, J. M. W., Holland, P. W. H. and Graham, C. F. (1993) Nature 361,490-492), we performed an extensive search for Hox-related genes in the planarian Dugesia(G)tigrina. Sequence analyses of seven planarian Dthox genes (Dthox-A to Dthox-G) reveal high similarities with the homeodomain region of the Hox cluster genes, allowing us to assign planarian Dthox genes to anterior and medial Hox cluster paralogous groups. Whole-mount in situ hybridization studies in regenerating adults showed very early, synchronous and colocalized activation of Dthox-D, Dthox-A, Dthox-C, Dthox-E, Dthox-G and Dthox-F. After one hour of regeneration a clear expression was observed in all Dthox genes studied. In addition, all seemed to be expressed in the same regenerative tissue, although in the last stages of regeneration (9 to 15 days) a differential timing of deactivation was observed. The same Dthox genes were also expressed synchronously and were colocalized during intercalary regeneration, although their expression was delayed. Terminal regeneration showed identical Dthox gene expression in anterior and posterior blastemas, which may prevent these genes from directing the distinction between head and tail. Finally, continuous expression along the whole lateral blastema in sagittal regenerates reflected a ubiquitous Dthox response in all types of regeneration that was not related specifically with the anteroposterior polarity.


Development ◽  
1992 ◽  
Vol 114 (4) ◽  
pp. 959-963 ◽  
Author(s):  
J.C. Izpisua-Belmonte ◽  
D.A. Ede ◽  
C. Tickle ◽  
D. Duboule

Developing chicken wings homozygous for the talpid (ta3/ta3) mutation are polydactylous and have defects in the establishment of their anteroposterior polarity. We analysed the expression domains of the posteriorly restricted homeobox Hox-4 genes in such mutant wings. The Hox-4 genes are now expressed right across the anteroposterior axis instead of being expressed just posteriorly. This correlates well with the absence of clear morphological differences between the talpid3 digits and reinforces the idea that vertebrate Hox-4 genes are involved in setting up the limb anteroposterior asymmetry.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4085-4094 ◽  
Author(s):  
F. Chanut ◽  
U. Heberlein

The Drosophila retina is a crystalline array of 800 ommatidia whose organization and assembly suggest polarization of the retinal epithelium along anteroposterior and dorsoventral axes. The retina develops by a stepwise process following the posterior-to-anterior progression of the morphogenetic furrow across the eye disc. Ectopic expression of hedgehog or local removal of patched function generates ectopic furrows that can progress in any direction across the disc leaving in their wake differentiating fields of ectopic ommatidia. We have studied the effect of these ectopic furrows on the polarity of ommatidial assembly and rotation. We find that the anteroposterior asymmetry of ommatidial assembly parallels the progression of ectopic furrows, regardless of their direction. In addition, ommatidia developing behind ectopic furrows rotate coordinately, forming equators in various regions of the disc. Interestingly, the expression of a marker normally restricted to the equator is induced in ectopic ommatidial fields. Ectopic equators are stable as they persist to adulthood, where they can coexist with the normal equator. Our results suggest that ectopic furrows can impart polarity to the disc epithelium, regarding the direction of both assembly and rotation of ommatidia. We propose that these processes are polarized as a consequence of furrow propagation, while more global determinants of dorsoventral and anteroposterior polarity may act less directly by determining the site of furrow initiation.


Development ◽  
1989 ◽  
Vol 105 (4) ◽  
pp. 779-786 ◽  
Author(s):  
M. Jamrich ◽  
S. Sato

We have isolated three cDNA clones that are preferentially expressed in the cement gland of early Xenopus laevis embryos. These clones were used to study processes involved in the induction of this secretory organ. Results obtained show that the induction of this gland coincides with the process of neural induction. Genes specific for the cement gland are expressed very early in the anterior neural plate of stage-12 embryos. This suggests that the anteroposterior polarity of the neural plate is already established during gastrulation. At later stages of development, two of the three genes have secondary sites of expression. The expression of these genes can be induced in isolated animal caps by incubation in 10 mM-NH4Cl, a treatment that is known to induce cement glands.


Science ◽  
1987 ◽  
Vol 238 (4834) ◽  
pp. 1675-1681 ◽  
Author(s):  
C Nusslein-Volhard ◽  
H. Frohnhofer ◽  
R Lehmann

Sign in / Sign up

Export Citation Format

Share Document