Faculty Opinions recommendation of Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance.

Author(s):  
Toshio Ogihara
2007 ◽  
Vol 13 (10) ◽  
pp. 1193-1202 ◽  
Author(s):  
Takashi Matsuzaka ◽  
Hitoshi Shimano ◽  
Naoya Yahagi ◽  
Toyonori Kato ◽  
Ayaka Atsumi ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 343
Author(s):  
Andrea Diociaiuti ◽  
Diego Martinelli ◽  
Francesco Nicita ◽  
Claudia Cesario ◽  
Elisa Pisaneschi ◽  
...  

Elongation of Very Long Chain Fatty Acid-4 (ELOVL4) is a fatty acid elongase responsible for very long-chain fatty acid biosynthesis in the brain, retina, and skin. Heterozygous mutations in ELOVL4 gene cause Stargardt-like macular dystrophy and spinocerebellar ataxia type-34, while different homozygous mutations have been associated with ichthyosis, spastic quadriplegia, and mental retardation syndrome in three kindred. We report the first two Italian children affected with neuro-ichthyosis due to the previously undescribed ELOVL4 homozygous frameshift variant c.435dupT (p.Ile146TyrfsTer29), and compound heterozygous variants c.208C>T (p.Arg70Ter) and c.487T>C (p.Cys163Arg), respectively. Both patients were born with collodion membrane followed by development of diffuse mild hyperkeratosis and scaling, localized erythema, and palmoplantar keratoderma. One infant displayed mild facial dysmorphism. They suffered from failure to thrive, and severe gastro-esophageal reflux with pulmonary aspiration. The patients presented axial hypotonia, hypertonia of limbs, and absent head control with poor eye contact from infancy. Visual evoked potentials showed markedly increased latency and poor morphological definition, indicative of alteration of the retro-retinal visual pathways in both patients. Ultrastructural skin examination revealed abnormalities of lamellar bodies with altered release in the epidermal granular and horny layer intracellular spaces. Our findings contribute to expanding the phenotypic and genotypic features of ELOVL4-related neuro-ichthyosis.


2019 ◽  
Vol 89 (1-2) ◽  
pp. 62-72
Author(s):  
Mooli Raja Gopal Reddy ◽  
Gundluri Venkata Asha ◽  
Sravan Kumar Manchiryala ◽  
Uday Kumar Putcha ◽  
Ayyalasomayajula Vajreswari ◽  
...  

Abstract. The liver is the main site of lipid metabolism and vitamin A storage. Dietary factors are known to affect liver function, thereby leading to metabolic abnormalities. Here, we assessed the impact of long-term feeding of a high-fat diet on hepatic vitamin A status and lipid metabolism. For this purpose, 14 male and 14 female 35-day-old mice (strain C57BL/6J) were each divided into 2 groups of 7 animals and fed either a stock diet or a high-fat (HF) diet for 26 weeks. In addition to increased body weight/weight gain, the HF diet induced hypertriglyceridemia in both (p < 0.01). However, liver triglyceride levels were comparable among groups, which could be partly explained by unaltered expression of various lipogenic pathway proteins such as sterol regulatory element binding protein 1 (SREBP1), fatty acid synthase (FAS), microsomal triglyceride transfer protein (MTTP), and glycerol 3-phosphate acyl transferase (GPAT). On the other hand, hepatic retinol stores increased significantly in both sexes, whereas males displayed elevated circulatory retinol levels. Notably, long-term feeding of a HF diet elevated n-3 polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA, C22:6) levels in the liver (p ≤ 0.001), which is in line with the over-expression of very long-chain fatty acid elongase 2 (ELOVL2) protein in both sexes of mice (p < 0.01). In conclusion, very long-term feeding of a HF diet increased hepatic retinol stores and induced hypertriglyceridemia. However, it had no effect on hepatic triglyceride accumulation, possibly due to increased DHA levels arising from the ELOVL2-mediated elongation pathway.


2011 ◽  
Vol 287 (14) ◽  
pp. 11469-11480 ◽  
Author(s):  
Richard Harkewicz ◽  
Hongjun Du ◽  
Zongzhong Tong ◽  
Hisham Alkuraya ◽  
Matthew Bedell ◽  
...  

2021 ◽  
Author(s):  
Wei Sun ◽  
Tao Nie ◽  
Kuai Li ◽  
Wenjie Wu ◽  
Qiaoyun Long ◽  
...  

<b>Background & Aims</b> <p>Hepatosteatosis, defined as excessive intrahepatic lipid accumulation, represents the first step of NAFLD. When combined with additional cellular stress, this benign status progresses to local and systemic pathological conditions such as NASH and insulin resistance. However, the molecular events directly caused by hepatic lipid build-up, in terms of its impact on liver biology and other peripheral organs, remain unclear. Carnitine palmitoyltransferase 1A (CPT1A) is the rate limiting enzyme for long chain fatty acid beta-oxidation in the liver. Here we utilise hepatocyte-specific <i>Cpt1a</i> knockout (LKO) mice to investigate the physiological consequences of abolishing hepatic long chain fatty acid metabolism.</p> <p><b>Approach & Results </b></p> <p>Compared to the wild-type (WT) littermates, high fat diet (HFD)-fed LKO mice displayed more severe hepatosteatosis but were otherwise protected against diet-induced weight gain, insulin resistance, hepatic ER stress, inflammation and damage. Interestingly, increased energy expenditure was observed in LKO mice, accompanied by enhanced adipose tissue browning. RNAseq analysis revealed that the peroxisome proliferator activator alpha (PPARα)- fibroblast growth factor 21 (FGF21) axis was activated in liver of LKO mice. Importantly, antibody-mediated neutralization of FGF21 abolished the healthier metabolic phenotype and adipose browning in LKO mice, indicating that the elevation of FGF21 contributes to the improved liver pathology and adipose browning in HFD-treated LKO mice. </p> <p><b>Conclusions</b></p> Liver with deficient CPT1A expression adopts a healthy steatotic status that protects against HFD-evoked liver damage and potentiates adipose browning in an FGF21-dependent manner. Inhibition of hepatic CPT1A may serve as a viable strategy for the treatment of obesity and NAFLD.


Sign in / Sign up

Export Citation Format

Share Document