Faculty Opinions recommendation of Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.

Author(s):  
Martin Schwab
2008 ◽  
Vol 294 (3) ◽  
pp. R884-R894 ◽  
Author(s):  
J. W. Brown ◽  
E. A. Sirlin ◽  
A. M. Benoit ◽  
J. M. Hoffman ◽  
R. A. Darnall

Activation of 5-HT1A receptors in the medullary raphé decreases sympathetically mediated brown adipose tissue (BAT) thermogenesis and peripheral vasoconstriction when previously activated with leptin, LPS, prostaglandins, or cooling. It is not known whether shivering is also modulated by medullary raphé 5-HT1A receptors. We previously showed in conscious piglets that activation of 5-HT1A receptors with (±)-8-hydroxy-2-(dipropylamino)-tetralin (8-OH-DPAT) in the paragigantocellularis lateralis (PGCL), a medullary region lateral to the raphé that contains substantial numbers of 5-HT neurons, eliminates rapid eye movement (REM) sleep and decreases shivering in a cold environment, but does not attenuate peripheral vasoconstriction. Hoffman JM, Brown JW, Sirlin EA, Benoit AM, Gill WH, Harris MB, Darnall RA. Am J Physiol Regul Integr Comp Physiol 293: R518–R527, 2007. We hypothesized that, during cooling, activation of 5-HT1A receptors in the medullary raphé would also eliminate REM sleep and, in contrast to activation of 5-HT1A receptors in the PGCL, would attenuate both shivering and peripheral vasoconstriction. In a continuously cool environment, dialysis of 8-OH-DPAT into the medullary raphé resulted in alternating brief periods of non-REM sleep and wakefulness and eliminated REM sleep, as observed when 8-OH-DPAT is dialyzed into the PGCL. Moreover, both shivering and peripheral vasoconstriction were significantly attenuated after 8-OH-DPAT dialysis into the medullary raphé. The effects of 8-OH-DPAT were prevented after dialysis of the selective 5-HT1A receptor antagonist WAY-100635. We conclude that, during cooling, exogenous activation of 5-HT1A receptors in the medullary raphé decreases both shivering and peripheral vasoconstriction. Our data are consistent with the hypothesis that neurons expressing 5-HT1A receptors in the medullary raphé facilitate spinal motor circuits involved in shivering, as well as sympathetic stimulation of other thermoregulatory effector mechanisms.


2017 ◽  
Vol 37 (26) ◽  
pp. 6372-6387 ◽  
Author(s):  
Calvin C. Smith ◽  
Julian F.R. Paton ◽  
Samit Chakrabarty ◽  
Ronaldo M. Ichiyama

Neuron ◽  
2001 ◽  
Vol 29 (2) ◽  
pp. 321-324 ◽  
Author(s):  
Kamal Sharma ◽  
Chian-Yu Peng
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Filipe Nascimento ◽  
Lennart R. B. Spindler ◽  
Gareth B. Miles

Abstract Neuromodulation ensures that neural circuits produce output that is flexible whilst remaining within an optimal operational range. The neuromodulator acetylcholine is released during locomotion to regulate spinal motor circuits. However, the range of receptors and downstream mechanisms by which acetylcholine acts have yet to be fully elucidated. We therefore investigated metabotropic acetylcholine receptor-mediated modulation by using isolated spinal cord preparations from neonatal mice in which locomotor-related output can be induced pharmacologically. We report that M2 receptor blockade decreases the frequency and amplitude of locomotor-related activity, whilst reducing its variability. In contrast, M3 receptor blockade destabilizes locomotor-related bursting. Motoneuron recordings from spinal cord slices revealed that activation of M2 receptors induces an outward current, decreases rheobase, reduces the medium afterhyperpolarization, shortens spike duration and decreases synaptic inputs. In contrast, M3 receptor activation elicits an inward current, increases rheobase, extends action potential duration and increases synaptic inputs. Analysis of miniature postsynaptic currents support that M2 and M3 receptors modulate synaptic transmission via different mechanisms. In summary, we demonstrate that M2 and M3 receptors have opposing modulatory actions on locomotor circuit output, likely reflecting contrasting cellular mechanisms of action. Thus, intraspinal cholinergic systems mediate balanced, multimodal control of spinal motor output.


Sign in / Sign up

Export Citation Format

Share Document