Faculty Opinions recommendation of Dynamic remodeling of ribosomes and endoplasmic reticulum in axon terminals of motoneurons.

Author(s):  
Mark Bothwell
1986 ◽  
Vol 44 (4) ◽  
pp. 325-333 ◽  
Author(s):  
II-Sei Watanabe ◽  
Chizuka Ide

Non-specific cholinesterase (ChE) activity was demonstrated in lamellated sensory corpuscles of the rat lip by light and electron microscopy using Karnovsky and Root's method. ChE activity was present in the interlamellar spaces between neighbouring lamellae as well as in the periaxonal space between axon terminals and their adjacent lamellae. Reaction products of ChE activity were also deposited in some caveolae of the lamellar cell plasma membrane, and in the cisternae of the rough endoplasmic reticulum as well as in the nuclear envelope of lamellar cell bodies. No definite reaction products were detected within the axon terminals. These findings show that the lamellated corpuscles in the rat lip, like other mechanoreceptors, have an intense ChE activity which is mainly associated with lamellar cells. It can be said that ChE histochemistry is useful to detect mechanoreceptors. The functional significance of ChE in mechanoreceptors is discussed.


2010 ◽  
Vol 70 (2) ◽  
pp. 341-350 ◽  
Author(s):  
GD Moraes ◽  
M. Achaval ◽  
MM Dal Piva ◽  
MC Faccioni-Heuser ◽  
GF Wassermann ◽  
...  

The ultrastructure of the reproductive gland, dorsal body (DB), of Megalobulimus abbreviatus was analysed. Electron microscope immunohistochemistry was used to detect FMRFamide-like peptides in the nerve endings within this gland. Nerve backfilling was used in an attempt to identify the neurons involved in this innervation. In M. abbreviatus, the DB has a uniform appearance throughout their supraesophageal and subesophageal portions. Dorsal body cells have several features in common with steroid-secreting gland cells, such as the presence of many lipid droplets, numerous mitochondria with tubular cristae and a developed smooth endoplasmic reticulum cisternae. Throughout the DB in M. abbreviatus numerous axonal endings were seen to be in contact with the DB cells exhibiting a synaptic-like structure. The axon terminals contained numerous electron-dense and scanty electron-lucid vesicles. In addition, the DB nerve endings exhibited FMRFamide immunoreactive vesicles. Injection of neural tracer into the DB yielded retrograde labelling of neurons in the metacerebrum lobe of the cerebral ganglia and in the parietal ganglia of the subesophageal ganglia complex. The possibility that some of these retrograde-labelled neurons might be FMRFamide-like neurons that may represent a neural control to the DB in M. abbreviatus is discussed.


2021 ◽  
Author(s):  
Chunchu Deng ◽  
Mehri Moradi ◽  
Sebastian Reinhard ◽  
Changhe Ji ◽  
Sibylle Jablonka ◽  
...  

In neurons, endoplasmic reticulum forms a highly dynamic network that enters axons and presynaptic terminals and plays a central role in Ca2+ homeostasis and synapse maintenance. However, the underlying mechanisms involved in regulation of its dynamic remodeling as well as its function in axon development and presynaptic differentiation remain elusive. Here, we used high resolution microscopy and live cell imaging to investigate rapid movements of endoplasmic reticulum and ribosomes in axons of cultured motoneurons after stimulation with Brain-derived neurotrophic factor. Our results indicate that the endoplasmic reticulum extends into axonal growth cone filopodia where its integrity and dynamic remodeling are regulated mainly by actin and its motor protein myosin VI. Additionally, we found that in axonal growth cones, ribosomes assemble into 80S subunits within seconds and associate with ER in response to extracellular stimuli which describes a novel function of axonal ER in dynamic regulation of local translation.


2017 ◽  
Vol 114 (24) ◽  
pp. E4859-E4867 ◽  
Author(s):  
Yumei Wu ◽  
Christina Whiteus ◽  
C. Shan Xu ◽  
Kenneth J. Hayworth ◽  
Richard J. Weinberg ◽  
...  

Close appositions between the membrane of the endoplasmic reticulum (ER) and other intracellular membranes have important functions in cell physiology. These include lipid homeostasis, regulation of Ca2+ dynamics, and control of organelle biogenesis and dynamics. Although these membrane contacts have previously been observed in neurons, their distribution and abundance have not been systematically analyzed. Here, we have used focused ion beam-scanning electron microscopy to generate 3D reconstructions of intracellular organelles and their membrane appositions involving the ER (distance ≤30 nm) in different neuronal compartments. ER–plasma membrane (PM) contacts were particularly abundant in cell bodies, with large, flat ER cisternae apposed to the PM, sometimes with a notably narrow lumen (thin ER). Smaller ER–PM contacts occurred throughout dendrites, axons, and in axon terminals. ER contacts with mitochondria were abundant in all compartments, with the ER often forming a network that embraced mitochondria. Small focal contacts were also observed with tubulovesicular structures, likely to be endosomes, and with sparse multivesicular bodies and lysosomes found in our reconstructions. Our study provides an anatomical reference for interpreting information about interorganelle communication in neurons emerging from functional and biochemical studies.


1967 ◽  
Vol 4 (6) ◽  
pp. 513-536 ◽  
Author(s):  
A. Koestner ◽  
C. C. Capen

The ultrastructure of the hypothalamic-neurohypophysial system in dogs was shown to be similar to other mammalian species. Diabetes insipidus was manifested morphologically by vesiculation and loss of ribosomes from the endoplasmic reticulum and an inactive Golgi apparatus in the neurons of the supraoptic nucleus. Axons and axon-terminals within the pars nervosa were devoid of mature neurosecretory granules. The diabetes insipidus appeared to be the result of compression of neurons within the supraoptic nucleus by the slowly expanding adenohypophysial neoplasm which resulted in a diminished synthesis of transport protein.


2021 ◽  
Author(s):  
Michael Sendtner ◽  
Chunchu Deng ◽  
Mehri Moradi ◽  
Sebastian Reinhard ◽  
Sören Doose ◽  
...  

Abstract Background Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. In neurons, a highly dynamic endoplasmic reticulum (ER) network exists in the axonal and presynaptic compartment which regulates Ca2+ homeostasis and synapse maintenance. However, the mechanisms of its dynamic regulation and mechanisms of dysfunction that contribute to neurodegeneration remain elusive. Methods Using high resolution microscopy and life imaging of cultured motoneurons from wildtype and a mouse model of spinal muscular atrophy, we investigated the dynamics of the axonal endoplasmic reticulum and ribosome distribution and activation. Results These studies revealed that the dynamic remodeling of ER in axonal filopodia of cultured motoneurons depends mainly on actin cytoskeleton. In Smn -deficient motoneurons, movements of ER in filopodia seems to be more affected than in the growth cone core. In addition, ribosome assembly that happens within seconds after exposure to Brain derived neurotrophic factors (BDNF) is reduced in axon terminals of Smn -deficient motoneurons, and also the association with ER as a response to extracellular stimuli is highly disturbed. Conclusions These findings do not only define a novel function of presynaptic ER in dynamic regulation of local translation. They also implicate impaired dynamic movements of axonal and presynaptic ER as a contributor to the pathophysiology of SMA and possibly also other neurodegenerative diseases.


2021 ◽  
Vol 134 (22) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Chunchu Deng is co-first author on ‘ Dynamic remodeling of ribosomes and endoplasmic reticulum in axon terminals of motoneurons’, published in Journal of Cell Science. Chunchu is a PhD Student in the lab of Professor Michael Sendtner at the Institute of Clinical Neurobiology, University Hospital Würzburg, Germany, investigating the dynamics of the endoplasmic reticulum and local translation in motoneurons, and their involvement in motoneuron diseases.


2021 ◽  
Author(s):  
Chunchu Deng ◽  
Mehri Moradi ◽  
Sebastian Reinhard ◽  
Changhe Ji ◽  
Sibylle Jablonka ◽  
...  

In neurons, endoplasmic reticulum forms a highly dynamic network that enters axons and presynaptic terminals and plays a central role in Ca2+ homeostasis and synapse maintenance. However, the underlying mechanisms involved in regulation of its dynamic remodeling as well as its function in axon development and presynaptic differentiation remain elusive. Here, we used high resolution microscopy and live cell imaging to investigate rapid movements of endoplasmic reticulum and ribosomes in axons of cultured motoneurons after stimulation with Brain-derived neurotrophic factor. Our results indicate that the endoplasmic reticulum extends into axonal growth cone filopodia where its integrity and dynamic remodeling are regulated mainly by actin and its motor protein myosin VI. Additionally, we found that in axonal growth cones, ribosomes assemble into 80S subunits within seconds and associate with ER in response to extracellular stimuli which describes a novel function of axonal ER in dynamic regulation of local translation.


Author(s):  
John J. Wolosewick ◽  
John H. D. Bryan

Early in spermiogenesis the manchette is rapidly assembled in a distal direction from the nuclear-ring-densities. The association of vesicles of smooth endoplasmic reticulum (SER) and the manchette microtubules (MTS) has been reported. In the mouse, osmophilic densities at the distal ends of the manchette are the organizing centers (MTOCS), and are associated with the SER. Rapid MT assembly and the lack of rough ER suggests that there is an existing pool of MT protein. Colcemid potentiates the reaction of vinblastine with tubulin and was used in this investigation to detect this protein.


Sign in / Sign up

Export Citation Format

Share Document