Faculty Opinions recommendation of Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment.

Author(s):  
Taina Pihlajaniemi ◽  
Valerio Izzi
2021 ◽  
Author(s):  
Simon Schwörer ◽  
Natalya N. Pavlova ◽  
Francesco V. Cimino ◽  
Bryan King ◽  
Xin Cai ◽  
...  

2018 ◽  
Vol 25 (36) ◽  
pp. 4758-4784 ◽  
Author(s):  
Amy L. Wilson ◽  
Magdalena Plebanski ◽  
Andrew N. Stephens

Cancer is one of the leading causes of death worldwide, and current research has focused on the discovery of novel approaches to effectively treat this disease. Recently, a considerable number of clinical trials have demonstrated the success of immunomodulatory therapies for the treatment of cancer. Monoclonal antibodies can target components of the immune system to either i) agonise co-stimulatory molecules, such as CD137, OX40 and CD40; or ii) inhibit immune checkpoints, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death-1 (PD-1) and its corresponding ligand PD-L1. Although tumour regression is the outcome for some patients following immunotherapy, many patients still do not respond. Furthermore, chemotherapy has been the standard of care for most cancers, but the immunomodulatory capacity of these drugs has only recently been uncovered. The ability of chemotherapy to modulate the immune system through a variety of mechanisms, including immunogenic cell death (ICD), increased antigen presentation and depletion of regulatory immune cells, highlights the potential for synergism between conventional chemotherapy and novel immunotherapy. In addition, recent pre-clinical trials indicate dipeptidyl peptidase (DPP) enzyme inhibition, an enzyme that can regulate immune cell trafficking to the tumour microenvironment, as a novel cancer therapy. The present review focuses on the current immunological approaches for the treatment of cancer, and summarizes clinical trials in the field of immunotherapy as a single treatment and in combination with chemotherapy.


Impact ◽  
2020 ◽  
Vol 2020 (7) ◽  
pp. 16-18
Author(s):  
Chia-Chien Hsieh

It has long been established that diet and nutrition can have a significant impact on health and even help reduce the prevalence of chronic diseases. It makes sense that what we put into our bodies would have some bearing on how our bodies function. Indeed, the World Health Organization developed guidelines focusing on nutrient intake, with a view to reducing the global burden of disease related to obesity, diabetes, cardiovascular disease, several forms of cancer, osteoporosis and dental disease. One exciting area of research, that is little understood, is the potential efficacy of lunasin – a peptide found in soy, legume and some cereal grains – against certain types of cancer. Lunasin has shown potential in the prevention of cancers. It is able to do this by suppressing the proliferation and migration of cancer cells, and anti-inflammation in this tumour environment. A specific area of study within this is lunasin's ability to reduce obesity associated breast cancer development. Associate Professor Chia-Chien Hsieh, a researcher based at the Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, current work is focused on the mechanism of lunasin's effect on the growth of breast cancer cells induced by obesity-associated inflammation. Her goal is to investigate the obesity-related breast cancer chemoprevention of lunasin, which might retard inflammatory responses around tumour microenvironment and even break the crosstalk of macrophages, adipocyte, and breast cancer cells. The aim being to provide potential strategies for ameliorating obesity-related ER(+) or ER(-) breast cancer development.


1994 ◽  
Vol 9 (4) ◽  
pp. 436-439 ◽  
Author(s):  
Joseph J. Higgins ◽  
Allen M. Glasgow ◽  
Marilyn Lusk ◽  
Douglas S. Kerr

Sign in / Sign up

Export Citation Format

Share Document